EMANet (ICCV'2019)
@inproceedings{li2019expectation,
title={Expectation-maximization attention networks for semantic segmentation},
author={Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9167--9176},
year={2019}
}
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 75.29% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 74.86% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 76.43% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 76.19% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 41.77% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 41.46% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.39% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 43.97% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 77.96% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 76.73% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.54% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 77.54% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757