ISNet (ICCV'2021)
@inproceedings{jin2021isnet,
title={ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation},
author={Jin, Zhenchao and Liu, Bin and Chu, Qi and Yu, Nenghai},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={7189--7198},
year={2021}
}
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU(ms+flip) | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 38.06%/40.39% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 40.53%/41.74% | cfg | model | log |
S-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/32/150 | train/test | 41.55%/42.53% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU(ms+flip) | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.22%/45.03% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 45.92%/47.29% | cfg | model | log |
S-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.004/poly/16/180 | train/val | 46.65%/47.56% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU(ms+flip) | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/440 | train/val | 79.32%/81.31% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/440 | train/val | 80.56%/81.96% | cfg | model | log |
S-101-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/440 | train/val | 78.78%/81.33% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU(flip) | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 53.14%/53.41% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 54.96%/55.41% | cfg | model | log |
S-101-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.007/poly/40/150 | train/val | 56.52%/56.81% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757
Please note that, due to differences in computational precision, the numerical values obtained when testing model performance on different versions of PyTorch or graphics cards may vary slightly. This is a normal phenomenon and the performance differences are generally within 0.1%.