-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathREADME.md
36 lines (23 loc) · 2.38 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
## Introduction
<a href="https://github.com/facebookresearch/mae">Official Repo</a>
<a href="https://github.com/SegmentationBLWX/sssegmentation/blob/main/ssseg/modules/models/backbones/mae.py">Code Snippet</a>
<details>
<summary align="left"><a href="https://arxiv.org/pdf/2111.06377.pdf">MAE (CVPR'2022)</a></summary>
```latex
@inproceedings{he2022masked,
title={Masked autoencoders are scalable vision learners},
author={He, Kaiming and Chen, Xinlei and Xie, Saining and Li, Yanghao and Doll{\'a}r, Piotr and Girshick, Ross},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={16000--16009},
year={2022}
}
```
</details>
## Results
#### ADE20k
| Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
| :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| UperNet | ImageNet-1k-224x224 | MAE-Vit-B | 512x512 | LR/POLICY/BS/EPOCH: 1e-4/poly/16/130 | train/val | 48.20% | [cfg](https://raw.githubusercontent.com/SegmentationBLWX/sssegmentation/main/ssseg/configs/mae/upernet_maevitbase_ade20k.py) | [model](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_mae/upernet_maevitbase_ade20k.pth) | [log](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_mae/upernet_maevitbase_ade20k.log) |
## More
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code **s757**