MobileNetV2 (CVPR'2018)
@inproceedings{sandler2018mobilenetv2,
title={Mobilenetv2: Inverted residuals and linear bottlenecks},
author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4510--4520},
year={2018}
}
MobileNetV3 (ICCV'2019)
@inproceedings{Howard_2019_ICCV,
title={Searching for MobileNetV3},
author={Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and Le, Quoc V. and Adam, Hartwig},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
pages={1314-1324},
month={October},
year={2019},
doi={10.1109/ICCV.2019.00140}}
}
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 59.89% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 68.40% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 70.08% | cfg | model | log |
DeepLabV3plus | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 70.04% | cfg | model | log |
LRASPPNet | - | M-V3S-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/180 | trainaug/val | 62.13% | cfg | model | log |
LRASPPNet | - | M-V3L-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/180 | trainaug/val | 67.90% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 30.85% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 35.09% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 37.55% | cfg | model | log |
DeepLabV3plus | ImageNet-1k-224x224 | M-V2-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 37.66% | cfg | model | log |
LRASPPNet | - | M-V3S-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/390 | train/val | 26.09% | cfg | model | log |
LRASPPNet | - | M-V3L-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/390 | train/val | 30.06% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | M-V2-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 70.77% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | M-V2-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 73.64% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | M-V2-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 76.74% | cfg | model | log |
DeepLabV3plus | ImageNet-1k-224x224 | M-V2-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 76.68% | cfg | model | log |
LRASPPNet | - | M-V3S-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/660 | train/val | 65.06% | cfg | model | log |
LRASPPNet | - | M-V3L-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/660 | train/val | 69.98% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757