Skip to content

Latest commit

 

History

History

mobilenet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

MobileNetV2 (CVPR'2018)
@inproceedings{sandler2018mobilenetv2,
    title={Mobilenetv2: Inverted residuals and linear bottlenecks},
    author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
    booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
    pages={4510--4520},
    year={2018}
}
MobileNetV3 (ICCV'2019)
@inproceedings{Howard_2019_ICCV,
    title={Searching for MobileNetV3},
    author={Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and Le, Quoc V. and Adam, Hartwig},
    booktitle={The IEEE International Conference on Computer Vision (ICCV)},
    pages={1314-1324},
    month={October},
    year={2019},
    doi={10.1109/ICCV.2019.00140}}
}

Results

PASCAL VOC

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 59.89% cfg | model | log
PSPNet ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 68.40% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 70.08% cfg | model | log
DeepLabV3plus ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 70.04% cfg | model | log
LRASPPNet - M-V3S-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/180 trainaug/val 62.13% cfg | model | log
LRASPPNet - M-V3L-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/180 trainaug/val 67.90% cfg | model | log

ADE20k

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 30.85% cfg | model | log
PSPNet ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 35.09% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 37.55% cfg | model | log
DeepLabV3plus ImageNet-1k-224x224 M-V2-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 37.66% cfg | model | log
LRASPPNet - M-V3S-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/390 train/val 26.09% cfg | model | log
LRASPPNet - M-V3L-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/390 train/val 30.06% cfg | model | log

CityScapes

Segmentor Pretrain Backbone Crop Size Schedule Train/Eval Set mIoU Download
FCN ImageNet-1k-224x224 M-V2-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 70.77% cfg | model | log
PSPNet ImageNet-1k-224x224 M-V2-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 73.64% cfg | model | log
DeepLabV3 ImageNet-1k-224x224 M-V2-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 76.74% cfg | model | log
DeepLabV3plus ImageNet-1k-224x224 M-V2-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 76.68% cfg | model | log
LRASPPNet - M-V3S-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/660 train/val 65.06% cfg | model | log
LRASPPNet - M-V3L-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/660 train/val 69.98% cfg | model | log

More

You can also download the model weights from following sources: