ResNeSt (ArXiv'2020)
@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 77.41% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 79.07% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 78.97% | cfg | model | log |
DeepLabV3plus | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 79.76% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 45.74% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 46.03% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 46.24% | cfg | model | log |
DeepLabV3plus | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 46.48% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
FCN | ImageNet-1k-224x224 | S-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 78.14% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | S-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 78.70% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.75% | cfg | model | log |
DeepLabV3plus | ImageNet-1k-224x224 | S-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 80.30% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757