SegFormer (NeurIPS'2021)
@article{xie2021segformer,
title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
journal={arXiv preprint arXiv:2105.15203},
year={2021}
}
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
MIT-B0 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 37.57% | cfg | model | log |
MIT-B1 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 42.25% | cfg | model | log |
MIT-B2 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 46.35% | cfg | model | log |
MIT-B3 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 48.31% | cfg | model | log |
MIT-B4 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 48.59% | cfg | model | log |
MIT-B5 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 49.61% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757