-
Notifications
You must be signed in to change notification settings - Fork 818
/
weighting_class_distributor.py
104 lines (82 loc) · 3.43 KB
/
weighting_class_distributor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
'''
After noticing such a substantial improvment 2.6% after my own manual changes,
validating my expectations, i've decided to automate this process.
'''
import keras
import os
import pickle
import numpy as np
validation_dir = "prepared_validation_data"
USE_WEIGHTS = True
DECAY = 0.9
# w0 s1 a2 d3 wa4 wd5 sa6 sd7 nk8
WEIGHTS = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
#WEIGHTS =[0.030903154382632643, 1000.0, 0.020275559590445278, 0.013302794647291147, 0.0225283995449392, 0.025031555049932444, 1000.0, 1000.0, 0.016423203268260675]
mapping_dict = {0: "W",
1: "S",
2: "A",
3: "D",
4: "WA",
5: "WD",
6: "SA",
7: "SD",
8: "NK",}
close_dict = {
0: {4: 0.3, 5: 0.3, 8: 0.05}, # Should be W, but said WA or WD NK nbd
1: {6: 0.3, 7: 0.3, 8: 0.05}, # Should be S, but said SA OR SD, NK nbd
2: {4: 0.3, 6: 0.3}, # Should be A, but SA or WA
3: {5: 0.3, 7: 0.3}, # Shoudl be D, but SD or WD
4: {2: 0.5}, # Should be WA, but A
5: {3: 0.5}, # Should be WD, but D
6: {1: 0.3, 2: 0.3}, # Should be SA, but S or A
7: {1: 0.3, 3: 0.3}, # Should be SD, but S or D
8: {0: 0.05, 1: 0.05, 2: 0.05, 3: 0.05, 4: 0.05, 5: 0.05, 6: 0.05, 7: 0.05, }, # should be NK... but whatever.
}
model = keras.models.load_model(f"trained_models/1536269759_xception-v1_p-01.0456_ta-0.73_va-0.38.model")
while True:
dist_dict = {0: 0,
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0}
total = 0
correct = 0
closeness = 0
# step 1
for f in os.listdir(validation_dir):
if ".pickle" in f:
chunk = pickle.load(open(os.path.join(validation_dir, f), "rb"))
for data in chunk:
total += 1
X = data[1]
X = X/255.0
y = data[0]
prediction = model.predict([X.reshape(-1, X.shape[0], X.shape[1], X.shape[2])])[0]
if USE_WEIGHTS:
prediction = np.array(prediction) * np.array(WEIGHTS)
dist_dict[np.argmax(prediction)] += 1
if np.argmax(prediction) == np.argmax(y):
correct += 1
closeness += 1
else:
if np.argmax(prediction) in close_dict[np.argmax(y)]:
closeness += close_dict[np.argmax(y)][np.argmax(prediction)]
print(30*"_")
print("Weights:", WEIGHTS)
print(f"Real mobile2-32-batch-0001.hdf5 accuracy: {round(correct/total, 3)}. Accuracy considering 'closeness': {round(closeness/total, 3)}")
print(dist_dict)
largest_key = max(dist_dict, key=dist_dict.get)
print()
with open('log.txt', "a") as f:
f.write("Weights: "+str(WEIGHTS))
f.write('\n')
f.write(f"Real mobile2-32-batch-0001.hdf5 accuracy: {round(correct/total, 3)}. Accuracy considering 'closeness': {round(closeness/total, 3)}\n")
f.write("Distribution: "+str(dist_dict))
f.write("\n")
f.write("\n")
f.write("\n")
WEIGHTS[largest_key] *= DECAY