forked from yanniedog/Autocrew
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathollama.py
203 lines (160 loc) · 7.19 KB
/
ollama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# filename: ollama.py
import requests
import json
import time
from bs4 import BeautifulSoup
from tqdm import tqdm
def format_size(bytes, suffix="B"):
"""Convert bytes to a more readable format in MB/s."""
return f"{bytes / 1_000_000:.2f} MB{suffix}"
import requests
import json
import time
from tqdm import tqdm
def pull_model(model_name, verbose=False):
url = "http://localhost:11434/api/pull"
headers = {"Content-Type": "application/json"}
data = {"name": model_name, "stream": True}
response = requests.post(url, headers=headers, data=json.dumps(data), stream=True)
if verbose:
pbar = None
start_time = time.time()
for line in response.iter_lines():
if line:
decoded_line = json.loads(line.decode('utf-8'))
if 'total' in decoded_line and 'completed' in decoded_line:
total = round(decoded_line['total'] / 1_000_000_000, 3) # Convert to gigabytes and round to 3 decimal places
completed = round(decoded_line['completed'] / 1_000_000_000, 3) # Convert to gigabytes and round to 3 decimal places
if pbar is None:
pbar = tqdm(total=total, dynamic_ncols=True, unit='gb', desc=f"Downloading {model_name}",
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}{unit}, {rate_fmt}, dur {elapsed}, eta {remaining}")
pbar.update(completed - pbar.n) # Update with the completed amount in gigabytes
if 'status' in decoded_line and decoded_line['status'] == 'success':
if pbar is not None:
pbar.close()
print("Model download completed successfully.")
return {"status": "success"}
if pbar is not None:
pbar.close()
else:
json_response = response.json()
if json_response is not None:
return json_response
else:
return {"status": "error", "message": "Invalid response from server"}
def list_models():
url = "http://localhost:11434/api/tags"
response = requests.get(url)
return response.json()
def get_user_choice(prompt, num_options):
while True:
print(prompt)
choice = input("Your choice (type 'back' to go back): ").strip().lower()
if choice == 'back':
return None
if choice.isdigit() and 1 <= int(choice) <= num_options:
return int(choice)
print("Invalid choice. Please enter a number from the list or type 'back'.")
def scrape_and_list_urls(base_url):
try:
print("Requesting the webpage...")
response = requests.get(base_url)
response.raise_for_status()
print("Webpage accessed successfully.")
soup = BeautifulSoup(response.content, 'html.parser')
all_links = soup.find_all('a', href=True)
print(f"Total links found: {len(all_links)}")
library_links = [a['href'] for a in all_links if a['href'].startswith('/library/')]
print(f"Filtered links: {len(library_links)}")
trimmed_links = sorted([link.replace('/library/', '') for link in library_links])
print("Trimmed and sorted links:")
for idx, link in enumerate(trimmed_links, 1):
print(f"{idx}. {link}")
choice = get_user_choice("Which model would you like to download?", len(trimmed_links))
if choice is None:
return None
selected_model = trimmed_links[choice - 1]
print(f"You selected: {selected_model}")
model_url = f"{base_url}{selected_model}/tags"
print(f"Formulated URL: {model_url}")
ollama_run_strings = scrape_ollama_run_strings(model_url)
if ollama_run_strings:
ollama_model_to_pull = select_ollama_run_string(ollama_run_strings)
if ollama_model_to_pull:
print(f"You selected: {ollama_model_to_pull}")
return ollama_model_to_pull
else:
return None
else:
print("No 'ollama run' strings found on the model page.")
return None
except requests.RequestException as e:
print(f"Error occurred: {e}")
return None
def scrape_ollama_run_strings(model_url):
try:
print("Requesting the model webpage...")
response = requests.get(model_url)
response.raise_for_status()
print("Model webpage accessed successfully.")
soup = BeautifulSoup(response.content, 'html.parser')
command_inputs = soup.find_all('input', class_='command')
ollama_run_strings = [input_element['value'] for input_element in command_inputs]
ollama_run_strings = sorted(set(ollama_run_strings))
return ollama_run_strings
except requests.RequestException as e:
print(f"Error occurred: {e}")
return []
def select_ollama_run_string(ollama_run_strings):
if not ollama_run_strings:
return None
# Remove the "ollama run " part from each string
display_strings = [run_string.replace('ollama run ', '') for run_string in ollama_run_strings]
print("Available model strings:")
for idx, display_string in enumerate(display_strings, 1):
print(f"{idx}. {display_string}")
choice = get_user_choice("Please select the quantisation to use", len(display_strings))
if choice is None:
return None
selected_value = ollama_run_strings[choice - 1].replace('ollama run ', '')
return selected_value
def main():
while True:
models = list_models()
if 'models' in models:
print("\nYour downloaded models:\n")
for idx, model in enumerate(models['models'], 1):
print(f"{idx}. {model['name']}")
print(f"{len(models['models']) + 1}. [Download a NEW model]")
else:
print("Failed to list models.")
return None
choice = get_user_choice("\nEnter the number of the model to download, or type a model name:", len(models['models']) + 1)
if choice is None:
continue
if choice <= len(models['models']):
# User selected an existing model
model_name = models['models'][choice - 1]['name']
print(f"You have selected the model: {model_name}")
return model_name
elif choice == len(models['models']) + 1:
# User selected to download a new model
base_url = "https://ollama.ai/library/"
selected_model = scrape_and_list_urls(base_url)
if selected_model:
model_name = selected_model
print(f"Attempting to download model: {model_name}...")
result = pull_model(model_name, verbose=True)
if isinstance(result, dict) and 'status' in result and result['status'] == 'success':
print(f"Model {model_name} downloaded successfully.")
return model_name
else:
print("Model download failed:", result)
return None
else:
continue
else:
print("Invalid choice. Please select a valid option.")
continue
if __name__ == "__main__":
main()