Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu.
It is written in Python and uses Qt for its graphical interface.
- Ubuntu / macOS / Windows
- Python2 / Python3
- PyQt4 / PyQt5
There are options:
- Platform agonistic installation: Anaconda, Docker
- Platform specific installation: Ubuntu, macOS
Anaconda
You need install Anaconda, then run below:
conda create --name=labelme python=2.7
source activate labelme
conda install pyqt
pip install labelme
Docker
You need install docker, then run below:
wget https://raw.githubusercontent.com/wkentaro/labelme/master/scripts/labelme_on_docker
chmod u+x labelme_on_docker
# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
./labelme_on_docker static/apc2016_obj3.jpg -O static/apc2016_obj3.json
Ubuntu
sudo apt-get install python-qt4 pyqt4-dev-tools
sudo pip install labelme
macOS
brew install qt qt4 || brew install pyqt # qt4 is deprecated
pip install labelme
Annotation
Run labelme --help
for detail.
labelme # Open GUI
labelme static/apc2016_obj3.jpg # Specify file
labelme static/apc2016_obj3.jpg -O static/apc2016_obj3.json # Close window after the save
The annotations are saved as a JSON file. The file includes the image itself.
Visualization
To view the json file quickly, you can use utility script:
labelme_draw_json static/apc2016_obj3.json
Convert to Dataset
To convert the json to set of image and label, you can run following:
labelme_json_to_dataset static/apc2016_obj3.json
This repo is the fork of mpitid/pylabelme, whose development has already stopped.