-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjaMoin.py
74 lines (44 loc) · 1006 Bytes
/
jaMoin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from cProfile import run
from multiprocessing import Value
from operator import index
import re
import scikitLern as sc
import busniessKpi as bKpi
großesMoin =[20,30,55,100]
a = [5,5]
#print(sc.machenSachen(großesMoin))
#ac1100 = sc.Schiff.Sägelfläche(22 , 33)
#print(ac1100)
#print(sc.Statistik.satzVonbayesGzahlig(10,8,7,6))
#a = bKpi.basics.endwert_ZW(100, 2, 2)
#print(a)
#jup = bKpi.shares.investmentProYear(a,2,3)
#
#print(jup)
div = [5,5]
#re = 2
#p = 3
#n = 1
#for n in range(0,len(div)):
# f = lambda x : x/((1+re)**n)
# newlist = list(map(f,div))
# n = n + 1
# #print(n)
#newValue = sum(newlist) + (p / ((1+re)**n))
#print(n)
#print(newValue)
data02 = [5,5,5,6,6,6,6]
ex = bKpi.expo(div, 0.05, 100)
ey = bKpi.expo(data02, 0.05, 100)
print(ex)
print(ey)
#sun = []
#for i in range(0,len(div)):
# k = div[i] / ex[i]
# sun.append(k)
#sumNew = sum(sun) + 1
p = lambda x : x/2
g = list(map(p,div))
a = bKpi.basics.rateOfReturn(5,5)
#print(n)
print(a)