-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
32 lines (24 loc) · 971 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open('ProfitPredictor.mdl', 'rb'))
ohe = pickle.load(open('StateEncoder.encoder','rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
rdSpend = float(request.form['rdSpend'])
admSpend = float(request.form['admSpend'])
markSpend = float(request.form['markSpend'])
state = request.form['state']
stateEncoded = ohe.transform(np.array([[state]]))
finalFeatures = np.concatenate((stateEncoded,np.array([[rdSpend,admSpend,markSpend]])) , axis = 1)
prediction = model.predict(finalFeatures)
return render_template('index.html', prediction_text='Expected Profit from the Startup is $ {}'.format(round(prediction[0])))
if __name__ == "__main__":
app.run(debug=True)