-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
83 lines (57 loc) · 2.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from platform import node
import numpy as np
import matplotlib.pyplot as plt
import pickle
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from Algorithms.Cascade_Correlation import CasCor
from Algorithms.ELM import ELM
from Algorithms.INN import INN
from Algorithms.MLP import MLP_Model
from Algorithms.RBFNet import RBFModel
from utils import *
from sklearn.metrics import r2_score
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
def build_parse():
parser = argparse.ArgumentParser(description="RL Algorithm Variables")
parser.add_argument("robotModel",nargs="?",type=str,default="Static",help="Type of Robot Model for Kinematics")
parser.add_argument("learningModel",nargs="?",type= str,default="ELM",help="Type of Learning Methodology to be used")
parser.add_argument("normalised",nargs="?",type=bool,default=True,help="Normalize the dataset for training")
parser.add_argument("isRotation",nargs="?",type=bool,default=False,help="Whether rotation is included in the learning process")
parser.add_argument("scaleMethod",nargs="?",type=str,default="Standard",help="Type of Scaler Used")
args = parser.parse_args()
return args
def train(T_train,W_train,T_test,W_test,model,args,giveMagnitude=False):
model.fit(W_train,T_train)
Ytr_pred = model.predict(W_train)
Yts_pred = model.predict(W_test)
f = open("Results/Training/"+args.learningModel+".sav","wb")
pickle.dump(model,f)
f.close()
error = rmse(T_test,Yts_pred)
error_tr = rmse(T_train,Ytr_pred)
r2_test = r2_score(T_test,Yts_pred)
if giveMagnitude:
magnitude = errorMagnitude(T_test,Yts_pred)
return (error_tr,error,r2_test,magnitude)
return (error_tr,error,r2_test)
if __name__=="__main__":
args = build_parse()
T_train,T_test,W_train,W_test = load_dataset(args)
if args.learningModel == "INN":
INN(W_train,T_train)
else:
if args.learningModel == "KNN":
model = KNeighborsRegressor(n_neighbors=40,weights='uniform')
elif args.learningModel == "Decision":
model = DecisionTreeRegressor(criterion='mae',splitter='best',min_samples_split=5,min_samples_leaf=3)
elif args.learningModel == "Cascade":
model = CasCor(W_train.shape[1],T_train.shape[1])
elif args.learningModel == "ELM":
model = ELM(nodes = 100)
elif args.learningModel == "MLP":
model = MLP_Model(W_train,T_train)
elif args.learningModel == "RBF":
model = RBFModel(W_train,T_train)
val = train(T_train,W_train,T_test,W_test,model,args)