-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
85 lines (70 loc) · 3.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import json
import argparse
import torch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from trainer import AMSMNetTrainer, FCN8sTrainer
from utils import Logger
def get_instance(module, name, config, *args):
return getattr(module, config[name]['type'])(*args, **config[name]['args'])
def main(config, resume=None, finetune=None):
train_logger = Logger()
# setup data_loader instances
data_loader = get_instance(module_data, 'adobe_data_loader', config)
valid_data_loader = data_loader.split_validation()
# build model architecture
model = get_instance(module_arch, 'arch', config)
# print(model)
# get function handles of loss and metrics
loss = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# content loss
content_loss = get_instance(module_loss, 'content_loss', config)
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = get_instance(torch.optim, 'optimizer', config, trainable_params)
lr_scheduler = get_instance(torch.optim.lr_scheduler, 'lr_scheduler', config, optimizer)
trainer = AMSMNetTrainer(model, loss, content_loss, metrics, optimizer,
resume=resume,
finetune=finetune,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
train_logger=train_logger)
# trainer = FCN8sTrainer(model, loss, metrics, optimizer,
# resume=resume,
# finetune=finetune,
# config=config,
# data_loader=data_loader,
# valid_data_loader=valid_data_loader,
# lr_scheduler=lr_scheduler,
# train_logger=train_logger)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training AMSMNet')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
parser.add_argument('-f', '--finetune', default=None, type=str,
help='path to the finetune checkpoint (default: None)')
args = parser.parse_args()
if args.config:
# load config file
config = json.load(open(args.config))
path = os.path.join(config['trainer']['save_dir'], config['name'])
elif args.resume:
# load config file from checkpoint, in case new config file is not given.
# Use '--config' and '--resume' arguments together to load trained model and train more with changed config.
config = torch.load(args.resume)['config']
else:
raise AssertionError("Configuration file need to be specified. Add '-c config.json', for example.")
if args.device:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
main(config, resume=args.resume, finetune=args.finetune)