-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadData.py
35 lines (34 loc) · 1.58 KB
/
readData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import h5py
import numpy as np
def readH5file(dataSet='awa1',type='binary'):
filename = "./datasets/"+dataSet+"/data.h5"
file = h5py.File(filename, 'r')
#==========================================#
train_x = np.array(file['train']['X'])
train_a = np.array(file['train']['A'][type])
train_y = np.array(file['train']['Y'])
# ==========================================#
val_x = np.array(file['val']['X'])
val_y = np.array(file['val']['Y'])
val_a = np.array(file['val']['A'][type])
# ==========================================#
test_x = np.array(file['test']['unseen']['X'])
test_a = np.array(file['test']['unseen']['A'][type])
test_y = np.array(file['test']['unseen']['Y'])
return (train_x, train_y, train_a), (test_x, test_y,test_a), (val_x, val_y,val_a)
def readH5file2(dataSet='awa1',type='binary'):
filename = "./datasets/"+dataSet+"/data.h5"
file = h5py.File(filename, 'r')
#==========================================#
train_x = np.array(file['train']['X'])
train_a = np.array(file['train']['A'][type])
train_y = np.array(file['train']['Y'])
# ==========================================#
test_x = np.array(file['test']['seen']['X'])
test_a = np.array(file['test']['seen']['A'][type])
test_y = np.array(file['test']['seen']['Y'])
return (train_x, train_y, train_a), (test_x, test_y,test_a)
def numberOfClass(dataSet='awa1'):
filename = "./datasets/"+dataSet+"/data.h5"
file = h5py.File(filename, 'r')
return np.unique(file['train']["Y"]).shape[0]+np.unique(file['test']['unseen']['Y']).shape[0]