forked from rougier/matplotlib-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathearthquakes.py
83 lines (67 loc) · 2.78 KB
/
earthquakes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -----------------------------------------------------------------------------
# Copyright (c) 2014, Nicolas P. Rougier. All Rights Reserved.
# Distributed under the (new) BSD License.
# -----------------------------------------------------------------------------
# Based on : https://peak5390.wordpress.com
# -> 2012/12/08/matplotlib-basemap-tutorial-plotting-global-earthquake-activity/
# -----------------------------------------------------------------------------
import urllib
import numpy as np
import matplotlib
matplotlib.rcParams['toolbar'] = 'None'
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.animation import FuncAnimation
# Open the earthquake data
# -------------------------
# -> http://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
feed = "http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/"
# Significant earthquakes in the past 30 days
# url = urllib.urlopen(feed + "significant_month.csv")
# Earthquakes of magnitude > 4.5 in the past 30 days
url = urllib.request.urlopen(feed + "4.5_month.csv")
# Earthquakes of magnitude > 2.5 in the past 30 days
# url = urllib.urlopen(feed + "2.5_month.csv")
# Earthquakes of magnitude > 1.0 in the past 30 days
# url = urllib.urlopen(feed + "1.0_month.csv")
# Set earthquake data
data = url.read()
data = data.split(b'\n')[+1:-1]
E = np.zeros(len(data), dtype=[('position', float, 2),
('magnitude', float, 1)])
for i in range(len(data)):
row = data[i].split(b',')
E['position'][i] = float(row[2]),float(row[1])
E['magnitude'][i] = float(row[4])
fig = plt.figure(figsize=(14,10))
ax = plt.subplot(1,1,1)
P = np.zeros(50, dtype=[('position', float, 2),
('size', float, 1),
('growth', float, 1),
('color', float, 4)])
# Basemap projection
map = Basemap(projection='mill')
map.drawcoastlines(color='0.50', linewidth=0.25)
map.fillcontinents(color='0.95')
scat = ax.scatter(P['position'][:,0], P['position'][:,1], P['size'], lw=0.5,
edgecolors = P['color'], facecolors='None', zorder=10)
def update(frame):
current = frame % len(E)
i = frame % len(P)
P['color'][:,3] = np.maximum(0, P['color'][:,3] - 1.0/len(P))
P['size'] += P['growth']
magnitude = E['magnitude'][current]
P['position'][i] = map(*E['position'][current])
P['size'][i] = 5
P['growth'][i]= np.exp(magnitude) * 0.1
if magnitude < 6:
P['color'][i] = 0,0,1,1
else:
P['color'][i] = 1,0,0,1
scat.set_edgecolors(P['color'])
scat.set_facecolors(P['color']*(1,1,1,0.25))
scat.set_sizes(P['size'])
scat.set_offsets(P['position'])
plt.title("Earthquakes > 4.5 in the last 30 days")
animation = FuncAnimation(fig, update, interval=10)
plt.show()