-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSparse_ASGD.py
112 lines (92 loc) · 4.78 KB
/
Sparse_ASGD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import math
import torch
from torch.optim.optimizer import Optimizer
class Sparse_ASGD(Optimizer):
"""Implements Sparse Averaged Stochastic Gradient Descent.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-2)
lambd (float, optional): decay term (default: 1e-4)
alpha (float, optional): power for eta update (default: 0.75)
t0 (float, optional): point at which to start averaging (default: 1e6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
"""
def __init__(self, params, lr=1e-2, lambd=1e-4, alpha=0.75, t0=1e6, weight_decay=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, lambd=lambd, alpha=alpha, t0=t0,
weight_decay=weight_decay)
super(Sparse_ASGD, self).__init__(params, defaults)
self.masks = {}
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for layer, p in enumerate(group['params']):
if p.grad is None:
continue
if layer in self.masks:
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('ASGD does not support sparse gradients')
state = self.state[p]
# State initialization for sparse ASGD
if len(state) == 0:
state['step'] = torch.zeros_like(p.data)
state['eta'] = group['lr']
state['mu'] = torch.ones_like(p.data)
state['ax'] = torch.zeros_like(p.data)
state['step'][self.masks[layer]!=1] = 0
state['step'][self.masks[layer]==1] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# decay term
p.data.mul_(1 - group['lambd'] * state['eta'])
# update parameter
p.data.add_(-state['eta'], grad)
# update eta and mu
state['mu'][(state['step'] == 0).byte() | (state['step'] == 1).byte() | (state['step'] == 2).byte()] = 1
state['mu'][(state['step'] != 0).byte() & (state['step'] != 1).byte() & (state['step'] != 2).byte()] = 1 / (state['step'][(state['step'] != 0).byte() & (state['step'] != 1).byte() & (state['step'] != 2).byte()] - 1)
# averaging
state['ax'][state['mu'] == 1] = p.data[state['mu'] == 1].clone()
state['ax'][state['mu'] != 1] = state['ax'][state['mu'] != 1].add_(p.data[state['mu'] != 1].sub(state['ax'][state['mu'] != 1]).mul(state['mu'][state['mu'] != 1]))
# clear non-existing ax
state['ax'] = state['ax'] * self.masks[layer]
else:
#dense layer update
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('ASGD does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['eta'] = group['lr']
state['mu'] = 1
state['ax'] = torch.zeros_like(p.data)
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# decay term
p.data.mul_(1 - group['lambd'] * state['eta'])
# update parameter
p.data.add_(-state['eta'], grad)
# averaging
if state['mu'] != 1:
state['ax'].add_(p.data.sub(state['ax']).mul(state['mu']))
else:
state['ax'].copy_(p.data)
#update eta and mu
state['eta'] = (group['lr'] /
math.pow((1 + group['lambd'] * group['lr'] * state['step']), group['alpha']))
state['mu'] = 1 / max(1, state['step'] - group['t0'])
return loss