-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
215 lines (176 loc) · 8.39 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
class LockedDropout(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, dropout=0.5):
if not self.training or not dropout:
return x
m = x.data.new(1, x.size(1), x.size(2)).bernoulli_(1 - dropout)
mask = Variable(m, requires_grad=False) / (1 - dropout)
mask = mask.expand_as(x)
return mask * x
def embedded_dropout(embed, words, dropout=0.1, scale=None):
if dropout:
mask = embed.weight.data.new().resize_((embed.weight.size(0), 1)).bernoulli_(1 - dropout).expand_as(
embed.weight) / (1 - dropout)
masked_embed_weight = mask * embed.weight
else:
masked_embed_weight = embed.weight
if scale:
masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight
padding_idx = embed.padding_idx
if padding_idx is None:
padding_idx = -1
X = torch.nn.functional.embedding(words, masked_embed_weight,
padding_idx, embed.max_norm, embed.norm_type,
embed.scale_grad_by_freq, embed.sparse
)
return X
class HighwayBlock(nn.Module):
""" Highway Layer Block. Can be used as a highway layer or stacked into a recurrent highway. """
def __init__(self, in_features, out_features, first=False, couple=False, input_drop=0.5, hidden_drop=0.25):
super(HighwayBlock, self).__init__()
self.first = first
self.couple = couple
self.out_features = out_features
if self.first:
self.W = nn.Linear(in_features, 2*out_features)
if not couple: self.W_C = nn.Linear(in_features, out_features)
self.R = nn.Linear(in_features, 2*out_features)
if not couple: self.R_C = nn.Linear(in_features, out_features)
def forward(self, x, s, mask):
if self.first:
W_H, W_T = torch.split(self.W(x), self.out_features, 1)
R_H, R_T = torch.split(self.R(s*mask), self.out_features, 1)
h = torch.tanh(W_H + R_H)
t = torch.sigmoid(W_T + R_T)
if self.couple:
c = 1 - t
else:
c = torch.sigmoid(self.W_C(x) + self.R_C(s*mask))
else:
R_H, R_T = torch.split(self.R(s*mask), self.out_features, 1)
h = torch.tanh(R_H)
t = torch.sigmoid(R_T)
if self.couple:
c = 1 - t
else:
c = torch.sigmoid(self.R_C(s*mask))
return h * t + s * c
class RecurrentHighway(nn.Module):
"""Recurrent Highway Layer. Stacks highway blocks with a recurrence mechanism. Replaces LSTM/GRU."""
def __init__(self, in_features, out_features, recurrence_depth=5, couple=False, input_drop=0.75, hidden_drop=0.25):
super(RecurrentHighway, self).__init__()
self.highways = [HighwayBlock(in_features, out_features,
first=True if l == 0 else False,
couple=couple, input_drop=input_drop, hidden_drop=hidden_drop) for l in
range(recurrence_depth)]
self.highways = nn.ModuleList(self.highways)
self.recurrence_depth = recurrence_depth
self.hidden_dim = out_features
self.hidden_drop = hidden_drop
def rhn_drop_mask(self, x, dropout):
if not self.training or not dropout:
return torch.ones_like(x, requires_grad=False)
else:
m = x.data.new(x.size(0), x.size(1)).bernoulli_(1 - dropout)
mask = Variable(m, requires_grad=False) / (1 - dropout)
return mask
def forward(self, inp, hidden):
# expects input dimensions [seq_len, bs, inp_dim]
outputs = []
# dropout mask of hidden of all steps
mask = self.rhn_drop_mask(hidden, self.hidden_drop)
for x in inp: # each step
for block in self.highways: # depth
hidden = block(x, hidden, mask)
outputs.append(hidden)
outputs = torch.stack(outputs)
return outputs, hidden
class RHN(nn.Module):
"""Recurrent Highway Networks. Stacks highway blocks with a recurrence mechanism. Replaces LSTM/GRU."""
def __init__(self, vocab_sz, embedding_dim, hidden_dim, recurrence_depth=1,
num_layers=1, input_dp=0.0, output_dp=0.0, hidden_dp=0.0, embed_dp=0.0, tie_weights=True,
couple=False):
super(RHN, self).__init__()
self.embedding = nn.Embedding(vocab_sz, embedding_dim)
self.rnns = [RecurrentHighway(embedding_dim if l == 0 else hidden_dim,
(hidden_dim if l != num_layers - 1 else embedding_dim) if tie_weights else hidden_dim,
recurrence_depth=recurrence_depth, couple=couple, input_drop=input_dp,
hidden_drop=hidden_dp) for l in range(num_layers)]
self.rnns = nn.ModuleList(self.rnns)
self.fc1 = nn.Linear(embedding_dim if tie_weights else hidden_dim, vocab_sz)
self.embed_drop = embed_dp
self.output_drop = output_dp
self.hidden_dim = hidden_dim
self.input_dp = input_dp
self.lockdrop = LockedDropout()
if tie_weights:
self.fc1.weight = self.embedding.weight
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc1.bias.data.fill_(0)
self.fc1.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, bs):
# Returns a list of zeroed hidden states of dimensions [bs, hidden_dim]
weight = next(self.parameters()).data
hidden = weight.new(bs, self.hidden_dim).zero_()
return hidden
def forward(self, x, hidden):
bptt_len, bs = x.shape
vocab_sz = self.embedding.num_embeddings
emb = embedded_dropout(self.embedding, x, dropout=self.embed_drop if self.training else 0)
out = self.lockdrop(emb, self.input_dp)
for i, rnn in enumerate(self.rnns):
out, hidden = rnn(out, hidden)
out = self.lockdrop(out, self.output_drop)
out = self.fc1(out.flatten(0, 1))
out = out.view(bptt_len, bs, vocab_sz)
return out, hidden
class Stacked_LSTM(nn.Module):
"""Stacked LSTM"""
def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False):
super(Stacked_LSTM, self).__init__()
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
if rnn_type in ['LSTM', 'GRU']:
self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
else:
try:
nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type]
except KeyError:
raise ValueError("""An invalid option for `--model` was supplied,
options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""")
self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout)
self.decoder = nn.Linear(nhid, ntoken)
if tie_weights:
if nhid != ninp:
raise ValueError('When using the tied flag, nhid must be equal to emsize')
self.decoder.weight = self.encoder.weight
self.init_weights()
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, bsz):
weight = next(self.parameters())
if self.rnn_type == 'LSTM':
return (weight.new_zeros(self.nlayers, bsz, self.nhid),
weight.new_zeros(self.nlayers, bsz, self.nhid))
else:
return weight.new_zeros(self.nlayers, bsz, self.nhid)
def forward(self, input, hidden):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden