-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompound.py
424 lines (349 loc) · 17.3 KB
/
compound.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# -*- coding: utf-8 -*-
#!pip install wandb
#import wandb
#wandb.login()
from keras.models import Model
from keras.layers import Input, LSTM, Dense, Bidirectional, Concatenate
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from keras.layers import Layer
import keras.backend as K
from wandb.keras import WandbCallback
import pickle
from keras.models import load_model
from keras.callbacks import EarlyStopping
"""# Requirements"""
# returns lists ol(kridant), w1l(dhatu), w2l(pratya)
def get_data(path):
with open(path) as f:
lines=f.read().splitlines()
ol=[]
w1l=[]
w2l=[]
for line in lines:
words=line.split(" ")
kridant=words[0]
dhatu=words[2]
pratya=words[4]
ol.append(kridant)
w1l.append(dhatu)
w2l.append(pratya)
return w1l,w2l,ol
def get_texts(file_path,test_split=0.2,random_state=1,take_last_two=False):
input_texts = []
target_texts = []
w1l,w2l,ol=get_data(file_path)
print("Sandhi dataset created")
ct=0
for i in range(len(w1l)):
#this condition avoids all the Satf~ and SAnac pratya
if(take_last_two==False and w2l[i]=="Satf~" or w2l[i]=="SAnac"):
ct+=1
continue
input_text = w1l[i] + '+' + w2l[i]
target_text = ol[i]
# We use "&" as the "start sequence" character for the targets, and "$" as "end sequence" character.
target_text = '&' + target_text + '$'
input_texts.append(input_text)
target_texts.append(target_text)
print("Total number of last two pratyas:",ct)
if(test_split!=0):
X_train, X_test, Y_train, Y_test = train_test_split(input_texts, target_texts, test_size=test_split, random_state=random_state)
return X_train,X_test,Y_train,Y_test
return input_texts,target_texts
def get_d(X,tokens):
for sentence in X:
for char in sentence:
tokens.add(char)
return tokens
def get_trained_model(architecture,X_train,Y_train,X_test=None,Y_test=None,latent_dim=32,batch_size=64,epochs=70,validation_split=0.2,verbose=1,use_wandb=False,model=None):
re=True
if(model==None):
re=False
model=Translator()
model.latent_dim=latent_dim
# getting model dictionary
input_texts=[x for x in X_train]
target_texts=[y for y in Y_train]
if(X_test!=None and Y_test!=None):
input_texts.extend(X_test)
target_texts.extend(Y_test)
characters=set()
characters=get_d(input_texts,characters)
characters=get_d(target_texts,characters)
model.max_encoder_seq_length = max([len(txt) for txt in input_texts])
model.max_decoder_seq_length = max([len(txt) for txt in target_texts])
# Using '*' for padding
characters.add('*')
characters = sorted(list(characters))
model.num_tokens = len(characters)
print('Number of samples:', len(input_texts))
print('Number of unique tokens:', model.num_tokens)
print('Max sequence length for inputs:', model.max_encoder_seq_length)
print('Max sequence length for outputs:', model.max_decoder_seq_length)
model.token_index = dict([(char, i) for i, char in enumerate(characters)])
model.reverse_target_char_index = dict((i, char) for char, i in model.token_index.items())
encoder_input_data = np.zeros((len(X_train), model.max_encoder_seq_length,model.num_tokens), dtype='float32')
decoder_input_data = np.zeros((len(X_train), model.max_decoder_seq_length, model.num_tokens), dtype='float32')
decoder_target_data = np.zeros((len(X_train), model.max_decoder_seq_length, model.num_tokens), dtype='float32')
for i, (input_text, target_text) in enumerate(zip(X_train, Y_train)):
for t, char in enumerate(input_text):
encoder_input_data[i, t, model.token_index[char]] = 1.
encoder_input_data[i, t + 1:, model.token_index['*']] = 1.
for t, char in enumerate(target_text):
# decoder_target_data is ahead of decoder_input_data by one timestep
decoder_input_data[i, t, model.token_index[char]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1, model.token_index[char]] = 1.
decoder_input_data[i, t + 1:, model.token_index['*']] = 1.
decoder_target_data[i, t:, model.token_index['*']] = 1.
if(re==True):
model.model=train(model.model,encoder_input_data,decoder_input_data,decoder_target_data,batch_size,epochs,validation_split,verbose,use_wandb,re=re)
return model
# train the model on text data
model.model,model.encoder_model,model.decoder_model=architecture(model.latent_dim,model.num_tokens)
model.model=train(model.model,encoder_input_data,decoder_input_data,decoder_target_data,batch_size,epochs,validation_split,verbose,use_wandb,re=re)
#save the best model and last model before returning
return model
# This function is just for logging results.
"""def use_wandb(project_name,run_name,batch_size,epochs,validation_split,latent_dim):
wandb.init(project=project_name,name=run_name)
config=wandb.config
config.epochs=epochs
config.batch_size=batch_size
config.validation_split=validation_split
config.latent_dim=latent_dim
"""
def train(model,encoder_input_data,decoder_input_data,decoder_target_data,batch_size,epochs,validation_split,verbose,use_wandb=False,re=False):
if(re==False):
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
if(use_wandb==True):
#print("Running:",run_name)
es = EarlyStopping(monitor='val_accuracy', mode='max', verbose=1,patience=4)
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,batch_size=batch_size,epochs=epochs,validation_split=validation_split,verbose=verbose,callbacks=[WandbCallback(),es])
else:
es = EarlyStopping(monitor='val_accuracy', mode='max', verbose=1,patience=4)
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,batch_size=batch_size,epochs=epochs,validation_split=validation_split,verbose=verbose,callbacks=[es])
return model
def normal_testing(X,Y,model,verbose=1,use_wandb=False,log_as="test_passed"):
#file1 = open("Incorrect_predictions.txt", "w")
predictions=model.get_predictions(X)
total=len(predictions)
passed=0
true=[a[1:-1] for a in Y]
#passed=np.sum([1 for i in range(total) if(predictions[i]==true[i])])
for i in range(total):
if(predictions[i]==true[i]):
passed+=1
else:
if(verbose==1):
print(str(i)+'/'+str(total))
print('-')
print('Input sentence: ', X[i])
print('Decoded sentence: ', predictions[i])
print('Expected sentence:', true[i])
if(use_wandb==True):
#wandb.log({log_as:str(passed)+"/"+str(total)})
wandb.log({log_as:passed/total})
print(log_as+":"+str(passed)+'/'+str(total))
return passed,total
def K_Fold_testing(X,Y,model_architecture,k,latent_dim=32,batch_size=64,epochs=70,validation_split=0,verbose=0,use_wandb=False,run_name="None",log_as="test_passed"):
acc=[]
train_acc=[]
if(use_wandb):
wandb.config.num_k=k
kf=KFold(n_splits=k,random_state=1,shuffle=True)
kf.get_n_splits(X,Y)
i=1
for train_index,test_index in kf.split(X):
x_train=list(np.array(X)[train_index.astype(int)])
x_test=list(np.array(X)[test_index.astype(int)])
y_train=list(np.array(Y)[train_index.astype(int)])
y_test=list(np.array(Y)[test_index.astype(int)])
print("split_number:",i)
model=get_trained_model(architecture=model_architecture,X_train=x_train,Y_train=y_train,X_test=x_test,Y_test=y_test,latent_dim=latent_dim,batch_size=batch_size,epochs=epochs,validation_split=validation_split,verbose=verbose,use_wandb=use_wandb)
train_passed,train_out_of=normal_testing(x_train,y_train,model,verbose=0,use_wandb=use_wandb,log_as="train_passed")
passed,outof=normal_testing(x_test,y_test,model,verbose=0,use_wandb=use_wandb,log_as="test_passed")
train_acc.append(train_passed/train_out_of)
acc.append(passed/outof)
print("------------")
i+=1
kf_acc=np.sum(acc)/k
kf_train_acc=np.sum(train_acc)/k
if(use_wandb):
wandb.log({"KFold_accuracy":kf_acc})
wandb.log({"KFold_train_accuracy":kf_train_acc})
print("KFold_train_acc=",kf_train_acc)
print("KFold_test_acc=",kf_acc)
class Translator:
def init(self):
self.token_index=None
self.num_tokens=0
self.max_encoder_seq_length=0
self.max_decoder_seq_length=0
self.model=None
self.encoder_model=None
self.decoder_model=None
self.reverse_target_char_index=None
def dictionary_info(self):
print("num_tokens",self.num_tokens)
print("max_encoder_seq_length",self.max_encoder_seq_length)
print("max_decoder_seq_length",self.max_decoder_seq_length)
print("token_index")
print(self.token_index)
print("reverse_target_char_index")
print(self.reverse_target_char_index)
def vectorize(self,X):
encoder_input_data = np.zeros((len(X), self.max_encoder_seq_length, self.num_tokens), dtype='float32')
for i, input_text in enumerate(X):
for t, char in enumerate(input_text):
if char not in self.token_index:
continue
encoder_input_data[i, t, self.token_index[char]] = 1.
encoder_input_data[i, t + 1:, self.token_index['*']] = 1.
return encoder_input_data
def get_predictions(self,X):
ans=[]
encoder_input_data=self.vectorize(X)
for seq_index in range(len(encoder_input_data)):
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = self.decode_sequence(input_seq)
#print(decoded_sentence,input_seq)
decoded_sentence = decoded_sentence.strip()
decoded_sentence = decoded_sentence.strip('$')
ans.append(decoded_sentence)
return ans
def decode_sequence(self,input_seq):
# Encode the input as state vectors.
states_value = self.encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, self.num_tokens))
# Populate the first character of target sequence with the start character.
target_seq[0, 0, self.token_index['&']] = 1.
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = self.decoder_model.predict([target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = self.reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# Exit condition: either hit max length
# or find stop character.
if (sampled_char == '$' or
len(decoded_sentence) > self.max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, self.num_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c]
return decoded_sentence
# use maximum seq length for input before using i.e 18 for taddhita and 17 for kridant in our dataset. You can explicilty check the length for your dataset. It is however not needed for a model that does not use attention.
class attention(Layer):
def __init__(self,**kwargs):
super(attention,self).__init__(**kwargs)
def build(self,input_shape):
self.W=self.add_weight(name="att_weight",shape=(input_shape[-1],1),initializer="normal")
self.b=self.add_weight(name="att_bias",shape=(18,1),initializer="zeros") # Change the sequence length before using. It depends on the dataset and for us it was (16,1) for splitting and (17,1) for synthesis
super(attention, self).build(input_shape)
def call(self,x):
et=K.squeeze(K.tanh(K.dot(x,self.W)+self.b),axis=-1)
#print(np.shape(et))
#print("....shape et")
at=K.softmax(et)
at=K.expand_dims(at,axis=-1)
output=x*at
return K.sum(output,axis=1)
def compute_output_shape(self,input_shape):
return (input_shape[0],input_shape[-1])
def get_config(self):
return super(attention,self).get_config()
def get_model_attention(latent_dim,num_tokens):
encoder_inputs = Input(shape=(None,num_tokens))
encoder = Bidirectional(LSTM(latent_dim,return_sequences=True,return_state=True,recurrent_dropout=0.2))
att_in,forward_h, forward_c, backward_h, backward_c=encoder(encoder_inputs)
att_out=attention()(att_in)
state_c = Concatenate()([forward_c, backward_c])
encoder_states=[att_out,state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim*2, return_sequences=True, return_state=True,recurrent_dropout=0.2)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(num_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim*2,))
decoder_state_input_c = Input(shape=(latent_dim*2,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
return model,encoder_model,decoder_model
def get_model(latent_dim,num_tokens):
encoder_inputs = Input(shape=(None, num_tokens))
encoder = Bidirectional(LSTM(latent_dim, return_state=True,recurrent_dropout=0.2))
encoder_outputs, forward_h, forward_c, backward_h, backward_c = encoder(encoder_inputs)
state_h = Concatenate()([forward_h, backward_h])
state_c = Concatenate()([forward_c, backward_c])
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim*2, return_sequences=True, return_state=True,recurrent_dropout=0.2)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(num_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim*2,))
decoder_state_input_c = Input(shape=(latent_dim*2,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
return model,encoder_model,decoder_model
def save_model(filename,model_obj):
mod=model_obj
fileobj=open(filename,'wb')
pickle.dump(mod,fileobj)
def restore_model(filename):
return pickle.load(open(filename,'rb'))
"""# Training"""
X_train, X_test, Y_train, Y_test=get_texts("Kosh_data/Taddhita.txt",random_state=1)
# can also use get_model instead of get_attention model to run the model without attention
translator=get_trained_model(get_model_attention,X_train,Y_train,X_test,Y_test,epochs=70,validation_split=0.1,batch_size=32,latent_dim=64,use_wandb=False)
normal_testing(X_test,Y_test,model=translator,verbose=0,use_wandb=False) #gives test accuracy
normal_testing(X_train,Y_train,model=translator,verbose=0,use_wandb=False,log_as="train_passed") # gives train accuracy
"""## Narrowing epoch range"""
#translator=get_trained_model(get_model,X_train,Y_train,X_test,Y_test,epochs=10,verbose=2,batch_size=32,latent_dim=64)
#normal_testing(X_test,Y_test,model=translator,verbose=0)
#for i in range(9):
# print("Increasing num of epochs by 10: total epochs=",10*(i+2))
# translator=get_trained_model(get_model_attention,X_train,Y_train,X_test,Y_test,epochs=10,model=translator,verbose=2,batch_size=32,latent_dim=64)
# a,b=normal_testing(X_test,Y_test,model=translator,verbose=0)
# print("total_epochs=",10*(i+2),"test_acc=",(a*100)/b)
#normal_testing(X_test,Y_test,translator)
#translator=get_trained_model(get_model_attention,X_train,Y_train,X_test,Y_test,epochs=5,model=translator)
"""## K-Fold"""
#use_wandb("kridanta_synthesis","Swapped_parameters_Regularized_KFold_with_attention_1",batch_size=32,epochs=40,validation_split=0.1,latent_dim=64)
#X,Y=get_texts("/content/log.txt",test_split=0)
#K_Fold_testing(X,Y,get_model_attention,5,verbose=1,validation_split=0.1,use_wandb=True,latent_dim=64,batch_size=32,epochs=40)