-
Notifications
You must be signed in to change notification settings - Fork 0
/
generation.py
220 lines (171 loc) · 7.68 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
torch.cuda.empty_cache()
import transformers
import json
from sklearn.model_selection import train_test_split
from transformers import GPT2ForSequenceClassification, Trainer, TrainingArguments
from transformers import GPT2TokenizerFast
from torch.utils.data import DataLoader
from transformers import AdamW
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def readsmiles(datafile):
fp=open(datafile,"r")
samples=[]
labels=[]
count=0
for line in fp:
if len(line)<5:
continue
# print(line)
# term=line.split("$")[1]
# if term.strip()=="-1":
# label=0
# else:
# label=1
# sample=line.split("$")[0]
sample=line.split("\n")[0]
# sample=sample+"$"
sample=sample
samples.append(sample)
count=count+1
labels.append(count)
return samples, labels
train_samples, train_labels = readsmiles('')
test_samples, test_labels = readsmiles('')
# print("samples", train_samples, "labels", train_labels)
# from sklearn.model_selection import train_test_split
train_samples, val_samples, train_labels, val_labels = train_test_split(train_samples, train_labels, test_size=0.1)
from transformers import GPT2TokenizerFast
from transformers import BioGptTokenizer, BioGptForCausalLM
# from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = GPT2TokenizerFast.from_pretrained('distilgpt2', truncation=True)
# from transformers import AutoTokenizer, AutoModelForMaskedLM
# # tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
# tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
# # tokenizer = AutoTokenizer.from_pretrained("mrm8488/chEMBL26_smiles_v2")
# tokenizer = AutoTokenizer.from_pretrained("ncfrey/ChemGPT-4.7M")
# # tokenizer = AutoTokenizer.from_pretrained("laituan245/molt5-small", model_max_length=512)
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# train_encodings = tokenizer(train_samples)
# val_encodings = tokenizer(val_samples)
# test_encodings = tokenizer(test_samples)
train_encodings = tokenizer(train_samples, truncation=True, padding = True)
val_encodings = tokenizer(val_samples, truncation = True, padding = True)
test_encodings = tokenizer(test_samples, truncation = True, padding = True)
class SmilesDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_dataset = SmilesDataset(train_encodings, train_labels)
val_dataset = SmilesDataset(val_encodings, val_labels)
test_dataset = SmilesDataset(test_encodings, test_labels)
# # print(train_dataset)
# from transformers import Trainer, TrainingArguments
# #model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
from transformers import DataCollatorForLanguageModeling
model=AutoModelForCausalLM.from_pretrained("distilgpt2")
# # model = AutoModelForCausalLM.from_pretrained("mrm8488/chEMBL26_smiles_v2")
# # model = AutoModelForCausalLM.from_pretrained("microsoft/biogpt")
# model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
# # model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-small')
# # model = AutoModelForCausalLM.from_pretrained("ncfrey/ChemGPT-4.7M")
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# torch.cuda.set_device(7)
model.to(device)
training_args = TrainingArguments(
output_dir='./results_gen_single_gpt2_all',
overwrite_output_dir = True , # output directory
num_train_epochs=1, # total number of training epochs
per_device_train_batch_size=1, # batch size per device during training
per_device_eval_batch_size=1, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs_gen_single_gpt2_all', # directory for storing logs
logging_steps=10,
resume_from_checkpoint='./results_gen_single_gpt2_all/checkpoint-681500',
save_total_limit=5
)
trainer = Trainer(
model=model, # the instantiated model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset, # evaluation dataset
data_collator=data_collator
)
# trainer.train('')
# fold = 1
# torch.save(model, str(fold)+"gpt2_all.pt")
from torch.utils.data import DataLoader
from transformers import AdamW
"""train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optim = AdamW(model.parameters(), lr=5e-5)
for epoch in range(3):
for batch in train_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
loss.backward()
optim.step()
model.eval()"""
model=torch.load("")
from transformers import pipeline
from tqdm.auto import tqdm
# device=torch.device("cuda")
# # model.to(device)
# # from transformers.pipelines.pt_utils import KeyDataset
# #model.cuda()
# # import csv
# model_name = ""
# model = AutoModelForCausalLM.from_pretrained(model_name)
generator = pipeline(task="text-generation", model=model.to('cpu'), tokenizer=tokenizer, temperature=0.8)
tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':2048}
num_generations = 26
generated_text = [generator(" ")[0]['generated_text'] for i in range(10000)]
with open('results_smiles_gpt2_10000_1.txt', 'w') as file:
for text_and_class in generated_text:
file.write(text_and_class + "\n")
k = 5 # set the value of k
# with torch.no_grad():
# input_ids = tokenizer("O=C(NO)c1cccc(OCc2ccc(-c3ccccc3)cc2)", return_tensors='pt').input_ids.repeat(num_generations, 1)
# logits = model(input_ids.to(model.device)).logits
# top_k_logits, top_k_indices = torch.topk(logits, k, dim=-1)
# # Print the top-k generated text for each prompt
# for i, prompt in enumerate(generated_text):
# print(f"Prompt {i}: {prompt}")
# for j in range(k):
# generated_sequence = tokenizer.decode(top_k_indices[i][j], skip_special_tokens=True)
# print(f"Top-{j+1} sequence: {generated_sequence}")
# print("")
# with open('generated_text.csv', 'w', newline='') as file:
# writer = csv.writer(file)
# writer.writerow(["Generated Text"])
# for text in generated_text:
# writer.writerow([text])
#evaluating the classifier
# generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
# tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
# generator("0 $ ")
# from transformers import pipeline
# from tqdm.auto import tqdm
# model=torch.load("")
# test_samples, test_labels = readsmiles('')
# # for i in range(50):
# # print(test_samples[i])
# classifier = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
# tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
# predictions=[]
# for i in range(50):
# predictions.append(classifier(test_samples[i],**tokenizer_kwargs))
# print(predictions)