-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.yml.example
47 lines (38 loc) · 1.74 KB
/
config.yml.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
NAME: example
MODE: 1 # 1: train, 2: test, 3: eval
MASK: 1 # 0: disable 1: enable
GATED: 1 # 0: vanilla conv 1: Gatedconv
NORM: 2 # 0: None 1: BatchNorm 2: InstanceNorm
SEED: 10 # random seed
GPU: [1] # list of gpu ids
DEBUG: 0 # turns on debugging mode
VERBOSE: 0 # turns on verbose mode in the output console
CLASS_NUM: 12
DISCRIMINATIVE: 1
PRED_DF: 0
PRED_COM: 0
PRED_SEM: 0
TRAIN_BASE_FOLDERS: [./example_data/train]
TEST_BASE_FOLDERS: [./example_data/train]
VALID_BASE_FOLDERS: [./example_data/train]
SUBFOLDERS: [train,gt,mask]
DATASET_PORTION: 1.0
LR_G: 0.0001 # learning rate
LR_D: 0.0001 # learning rate
BETA_G: 0.5
BETA_D: 0.5
BETA2: 0.9 # adam optimizer beta2
BATCH_SIZE: 4 # input batch size for training
BATCH_FACTOR: 4
MAX_ITERS: 1e8 # maximum number of iterations to train the model
PADDING: replicate # zeros, circular, constant, replicate
PAD_VALUE: 0 # only used when padding mode is constant
MASK_LOSS: 0 # mask out the loss from unknown regions
GAN_LOSS: nsgan # nsgan | lsgan | hinge
SSC_LOSS: lognll # lognll | softf1
INPAINT_ADV_LOSS_WEIGHT: 0.1 # adversarial loss weight
SAVE_INTERVAL: 500 # how many iterations to wait before saving model (0: never)
SAMPLE_INTERVAL: 0 # how many iterations to wait before sampling (0: never)
SAMPLE_SIZE: 1 # number of inputs to sample
EVAL_INTERVAL: 0 # how many iterations to wait before model evaluation (0: never)
LOG_INTERVAL: 10 # how many iterations to wait before logging training status (0: never)