-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcenternet.py
552 lines (467 loc) · 25.8 KB
/
centernet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"""
为使用mac的gpu,119行 device设置成了mps
"""
import colorsys
import os
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from PIL import ImageDraw, ImageFont, Image
from nets.centernet import CenterNet_HourglassNet, CenterNet_Resnet50
from utils.utils import (cvtColor, get_classes, preprocess_input, resize_image,
show_config)
from utils.utils_bbox import decode_bbox, postprocess
import torch.nn.functional
# --------------------------------------------#
# 使用自己训练好的模型预测需要修改3个参数
# model_path、classes_path和backbone
# 训练时的model_path和classes_path参数的修改
# --------------------------------------------#
class CenterNet(object):
_defaults = {
# 模型路径
"model_path": 'logs/loss_2022_08_14_17_32_17/ep075-loss1.363-val_loss1.387.pth',
# 类别文件路径
"classes_path": 'model_data/lroc_classes.txt',
# backbone设置
"backbone": 'hourglass',
"input_shape": [512, 512],
# 只有得分大于置信度的预测框会被保留下来
"confidence": 0.3,
# 非极大抑制所用到的nms_iou大小
"nms_iou": 0.3,
"nms": True,
"letterbox_image": False,
"cuda": False
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
# centernet初始化
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
for name, value in kwargs.items():
setattr(self, name, value)
self._defaults[name] = value
# 计算总的类的数量
self.class_names, self.num_classes = get_classes(self.classes_path)
# 画框设置不同的颜色
hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
self.generate()
show_config(**self._defaults)
def generate(self, onnx=False):
# 载入模型与权值
assert self.backbone in ['resnet50', 'hourglass']
if self.backbone == "resnet50":
self.net = CenterNet_Resnet50(num_classes=self.num_classes, pretrained=False)
else:
self.net = CenterNet_HourglassNet({'hm': self.num_classes, 'wh': 2, 'reg': 2})
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('mps')
self.net.load_state_dict(torch.load(self.model_path, map_location=device))
self.net = self.net.eval()
print('{} model, and classes loaded.'.format(self.model_path))
if not onnx:
if self.cuda:
self.net = torch.nn.DataParallel(self.net)
self.net = self.net.cuda()
# 检测图片
def detect_image(self, image, crop=False, count=False):
# 计算输入图片的高和宽
image_shape = np.array(np.shape(image)[0:2])
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
image = cvtColor(image)
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# 图片预处理,归一化。获得的photo的shape为[1, 512, 512, 3]
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(np.asarray(image_data)).type(torch.FloatTensor)
if self.cuda:
images = images.cuda()
# 将图像输入网络当中进行预测
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
# 利用预测结果进行解码
outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda)
results = postprocess(outputs, self.nms, image_shape, self.input_shape, self.letterbox_image, self.nms_iou)
# 如果没有检测到撞击坑,则返回原图
if results[0] is None:
return image
top_label = np.array(results[0][:, 5], dtype='int32')
top_conf = results[0][:, 4]
top_boxes = results[0][:, :4]
# 设置字体与边框厚度
font = ImageFont.truetype(font='model_data/simhei.ttf',
size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = max((np.shape(image)[0] + np.shape(image)[1]) // self.input_shape[0], 1)
# 计数
if count:
print("top_label:", top_label)
classes_nums = np.zeros([self.num_classes])
for i in range(self.num_classes):
num = np.sum(top_label == i)
if num > 0:
print(self.class_names[i], " : ", num)
classes_nums[i] = num
print("classes_nums:", classes_nums)
# 是否进行目标的裁剪
if crop:
for i, c in list(enumerate(top_label)):
top, left, bottom, right = top_boxes[i]
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
dir_save_path = "img_crop"
if not os.path.exists(dir_save_path):
os.makedirs(dir_save_path)
crop_image = image.crop([left, top, right, bottom])
crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)
print("save crop_" + str(i) + ".png to " + dir_save_path)
# 图像绘制
for i, c in list(enumerate(top_label)):
predicted_class = self.class_names[int(c)]
box = top_boxes[i]
score = top_conf[i]
top, left, bottom, right = box
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
label = '{} '.format(predicted_class)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, top, left, bottom, right)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
# draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
draw.rectangle([left + i, top + i, right - i, bottom - i], outline='green')
# draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
# draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font) # 框左上角的类别标注
del draw
return image
def detect_image_calc(self, image, sizes):
# 计算输入图片的高和宽
image_shape = np.array(np.shape(image)[0:2])
image = cvtColor(image)
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# 归一化
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(np.asarray(image_data)).type(torch.FloatTensor)
if self.cuda:
images = images.cuda()
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda)
results = postprocess(outputs, self.nms, image_shape, self.input_shape, self.letterbox_image, self.nms_iou)
if results[0] is None:
return sizes
top_label = np.array(results[0][:, 5], dtype='int32')
top_conf = results[0][:, 4]
top_boxes = results[0][:, :4]
for i, c in list(enumerate(top_label)):
predicted_class = self.class_names[int(c)]
box = top_boxes[i]
score = top_conf[i]
top, left, bottom, right = box
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
h = bottom - top # 计算预测框的尺寸
if h // 10 == 1:
if h % 10 <= 1:
sizes[54] += 1
elif h % 10 <= 2:
sizes[55] += 1
elif h % 10 <= 4:
sizes[56] += 1
elif h % 10 <= 6:
sizes[57] += 1
elif h % 10 <= 8:
sizes[58] += 1
else:
sizes[59] += 1
else:
sizes[h // 10] += 1
label = '{} '.format(predicted_class)
# print(label, top, left, bottom, right, h)
print('sizes:', sizes)
return sizes
# 计算最小尺寸的撞击坑
def detect_image_calc_minsize(self, image, minsize):
image_shape = np.array(np.shape(image)[0:2])
image = cvtColor(image)
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(np.asarray(image_data)).type(torch.FloatTensor)
if self.cuda:
images = images.cuda()
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda)
results = postprocess(outputs, self.nms, image_shape, self.input_shape, self.letterbox_image, self.nms_iou)
if results[0] is None:
return minsize
top_label = np.array(results[0][:, 5], dtype='int32')
top_conf = results[0][:, 4]
top_boxes = results[0][:, :4]
# ---------------------------------------------------------#
# 图像绘制
# ---------------------------------------------------------#
for i, c in list(enumerate(top_label)):
predicted_class = self.class_names[int(c)]
box = top_boxes[i]
score = top_conf[i]
top, left, bottom, right = box
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
h = bottom - top # 计算预测框的尺寸
w = right - left
if np.fabs(h - w) < 5 and h * w < minsize:
minsize = h * w
print('h:', h, ' w', w, ' minsize:', minsize)
label = '{} '.format(predicted_class) # 改后
# print(label, top, left, bottom, right, h)
return minsize
def get_FPS(self, image, test_interval):
# ---------------------------------------------------#
# 计算输入图片的高和宽
# ---------------------------------------------------#
image_shape = np.array(np.shape(image)[0:2])
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# -----------------------------------------------------------#
# 图片预处理,归一化。获得的photo的shape为[1, 512, 512, 3]
# -----------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(np.asarray(image_data)).type(torch.FloatTensor)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
# -----------------------------------------------------------#
# 利用预测结果进行解码
# -----------------------------------------------------------#
outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda)
# -------------------------------------------------------#
# 对于centernet网络来讲,确立中心非常重要。
# 对于大目标而言,会存在许多的局部信息。
# 此时对于同一个大目标,中心点比较难以确定。
# 使用最大池化的非极大抑制方法无法去除局部框
# 所以我还是写了另外一段对框进行非极大抑制的代码
# 实际测试中,hourglass为主干网络时有无额外的nms相差不大,resnet相差较大。
# -------------------------------------------------------#
results = postprocess(outputs, self.nms, image_shape, self.input_shape, self.letterbox_image, self.nms_iou)
t1 = time.time()
for _ in range(test_interval):
with torch.no_grad():
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
# -----------------------------------------------------------#
# 利用预测结果进行解码
# -----------------------------------------------------------#
outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda)
# -------------------------------------------------------#
# 对于centernet网络来讲,确立中心非常重要。
# 对于大目标而言,会存在许多的局部信息。
# 此时对于同一个大目标,中心点比较难以确定。
# 使用最大池化的非极大抑制方法无法去除局部框
# 所以我还是写了另外一段对框进行非极大抑制的代码
# 实际测试中,hourglass为主干网络时有无额外的nms相差不大,resnet相差较大。
# -------------------------------------------------------#
results = postprocess(outputs, self.nms, image_shape, self.input_shape, self.letterbox_image,
self.nms_iou)
t2 = time.time()
tact_time = (t2 - t1) / test_interval
return tact_time
def detect_heatmap(self, image, heatmap_save_path):
import cv2
import matplotlib.pyplot as plt
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# -----------------------------------------------------------#
# 图片预处理,归一化。获得的photo的shape为[1, 512, 512, 3]
# -----------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(np.asarray(image_data)).type(torch.FloatTensor)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
# print('image.shape:',image.size)
img1 = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) # 将PIL转化为cv2
# cv2.imshow("img", img1)
# cv2.waitKey()
# plt.imshow(image, alpha=1)
# plt.axis('off')
mask = np.zeros((image.size[1], image.size[0]))
score = np.max(outputs[0][0].permute(1, 2, 0).cpu().numpy(), -1)
score = cv2.resize(score, (image.size[0], image.size[1]))
normed_score = (score * 255).astype('uint8')
mask = np.maximum(mask, normed_score)
# print('mask.shape:',mask.shape)
# print('mask.type:', type(mask))
mask_img = Image.fromarray(mask)
mask_img = cvtColor(mask_img)
img2 = cv2.cvtColor(np.asarray(mask_img), cv2.COLOR_RGB2GRAY)
img2 = cv2.applyColorMap(img2, cv2.COLORMAP_JET)
img_mix = cv2.addWeighted(img1, 1, img2, 1, 0)
# cv2.imshow("res", img_mix)
# cv2.waitKey()
cv2.imwrite(heatmap_save_path[:-3] + 'png', img_mix)
# print('mask_img.shape',mask_img.size)
# res = Image.blend(image, mask_img, 0.3)
# res.show('res')
# plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet")
# plt.imshow(mask, alpha=0.5) # 改
# plt.show()
# plt.axis('off')
# plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
# plt.margins(0, 0)
# plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches = -0.1)
# plt.savefig(heatmap_save_path, bbox_inches='tight', pad_inches = -0.1) # 改
# print("Save to the " + heatmap_save_path)
# plt.show()
def convert_to_onnx(self, simplify, model_path):
import onnx
self.generate(onnx=True)
im = torch.zeros(1, 3, *self.input_shape).to('cpu') # image size(1, 3, 512, 512) BCHW
input_layer_names = ["images"]
output_layer_names = ["output"]
# Export the model
print(f'Starting export with onnx {onnx.__version__}.')
torch.onnx.export(self.net,
im,
f=model_path,
verbose=False,
opset_version=12,
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True,
input_names=input_layer_names,
output_names=output_layer_names,
dynamic_axes=None)
# Checks
model_onnx = onnx.load(model_path) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Simplify onnx
if simplify:
import onnxsim
print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=False,
input_shapes=None)
assert check, 'assert check failed'
onnx.save(model_onnx, model_path)
print('Onnx model save as {}'.format(model_path))
def get_map_txt(self, image_id, image, class_names, map_out_path):
f = open(os.path.join(map_out_path, "detection-results/" + image_id + ".txt"), "w")
# ---------------------------------------------------#
# 计算输入图片的高和宽
# ---------------------------------------------------#
image_shape = np.array(np.shape(image)[0:2])
# ---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
# ---------------------------------------------------------#
image = cvtColor(image)
# ---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
# ---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
# -----------------------------------------------------------#
# 图片预处理,归一化。获得的photo的shape为[1, 512, 512, 3]
# -----------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(np.asarray(image_data)).type(torch.FloatTensor)
if self.cuda:
images = images.cuda()
# ---------------------------------------------------------#
# 将图像输入网络当中进行预测!
# ---------------------------------------------------------#
outputs = self.net(images)
if self.backbone == 'hourglass':
outputs = [outputs[-1]["hm"].sigmoid(), outputs[-1]["wh"], outputs[-1]["reg"]]
# -----------------------------------------------------------#
# 利用预测结果进行解码
# -----------------------------------------------------------#
outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda)
# -------------------------------------------------------#
# 对于centernet网络来讲,确立中心非常重要。
# 对于大目标而言,会存在许多的局部信息。
# 此时对于同一个大目标,中心点比较难以确定。
# 使用最大池化的非极大抑制方法无法去除局部框
# 所以我还是写了另外一段对框进行非极大抑制的代码
# 实际测试中,hourglass为主干网络时有无额外的nms相差不大,resnet相差较大。
# -------------------------------------------------------#
results = postprocess(outputs, self.nms, image_shape, self.input_shape, self.letterbox_image, self.nms_iou)
# --------------------------------------#
# 如果没有检测到物体,则返回原图
# --------------------------------------#
if results[0] is None:
return
top_label = np.array(results[0][:, 5], dtype='int32')
top_conf = results[0][:, 4]
top_boxes = results[0][:, :4]
for i, c in list(enumerate(top_label)):
predicted_class = self.class_names[int(c)]
box = top_boxes[i]
score = str(top_conf[i])
top, left, bottom, right = box
if predicted_class not in class_names:
continue
f.write("%s %s %s %s %s %s\n" % (
predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)), str(int(bottom))))
f.close()
return