-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_miou.py
44 lines (36 loc) · 1.8 KB
/
get_miou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
from PIL import Image
from tqdm import tqdm
from unet import Unet
from utils.utils_metrics import compute_mIoU, show_results
if __name__ == "__main__":
miou_mode = 0
num_classes = 21
name_classes = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
"tvmonitor"]
# name_classes = ["_background_","cat","dog"]
VOCdevkit_path = 'VOCdevkit'
image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Segmentation/val.txt"), 'r').read().splitlines()
gt_dir = os.path.join(VOCdevkit_path, "VOC2007/SegmentationClass/")
miou_out_path = "miou_out"
pred_dir = os.path.join(miou_out_path, 'detection-results')
if miou_mode == 0 or miou_mode == 1:
if not os.path.exists(pred_dir):
os.makedirs(pred_dir)
print("Load model.")
unet = Unet()
print("Load model done.")
print("Get predict result.")
for image_id in tqdm(image_ids):
image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/" + image_id + ".jpg")
image = Image.open(image_path)
image = unet.get_miou_png(image)
image.save(os.path.join(pred_dir, image_id + ".png"))
print("Get predict result done.")
if miou_mode == 0 or miou_mode == 2:
print("Get miou.")
hist, IoUs, PA_Recall, Precision = compute_mIoU(gt_dir, pred_dir, image_ids, num_classes,
name_classes) # 执行计算mIoU的函数
print("Get miou done.")
show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes)