-
Notifications
You must be signed in to change notification settings - Fork 15
/
evaluate_pose.py
143 lines (108 loc) · 5.15 KB
/
evaluate_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from __future__ import absolute_import, division, print_function
import os
import torch
import networks
import numpy as np
from torch.utils.data import DataLoader
from layers import transformation_from_parameters
from utils import readlines
from options import MonodepthOptions
from datasets import SCAREDRAWDataset
# from https://github.com/tinghuiz/SfMLearner
def dump_xyz(source_to_target_transformations):
xyzs = []
cam_to_world = np.eye(4)
xyzs.append(cam_to_world[:3, 3])
for source_to_target_transformation in source_to_target_transformations:
cam_to_world = np.dot(cam_to_world, source_to_target_transformation)
# cam_to_world = np.dot(source_to_target_transformation, cam_to_world)
xyzs.append(cam_to_world[:3, 3])
return xyzs
def dump_r(source_to_target_transformations):
rs = []
cam_to_world = np.eye(4)
rs.append(cam_to_world[:3, :3])
for source_to_target_transformation in source_to_target_transformations:
cam_to_world = np.dot(cam_to_world, source_to_target_transformation)
# cam_to_world = np.dot(source_to_target_transformation, cam_to_world)
rs.append(cam_to_world[:3, :3])
return rs
# from https://github.com/tinghuiz/SfMLearner
def compute_ate(gtruth_xyz, pred_xyz_o):
# Make sure that the first matched frames align (no need for rotational alignment as
# all the predicted/ground-truth snippets have been converted to use the same coordinate
# system with the first frame of the snippet being the origin).
offset = gtruth_xyz[0] - pred_xyz_o[0]
pred_xyz = pred_xyz_o + offset[None, :]
# Optimize the scaling factor
scale = np.sum(gtruth_xyz * pred_xyz) / np.sum(pred_xyz ** 2)
alignment_error = pred_xyz * scale - gtruth_xyz
rmse = np.sqrt(np.sum(alignment_error ** 2)) / gtruth_xyz.shape[0]
return rmse
def compute_re(gtruth_r, pred_r):
RE = 0
gt = gtruth_r
pred = pred_r
for gt_pose, pred_pose in zip(gt, pred):
# Residual matrix to which we compute angle's sin and cos
R = gt_pose @ np.linalg.inv(pred_pose)
s = np.linalg.norm([R[0, 1] - R[1, 0],
R[1, 2] - R[2, 1],
R[0, 2] - R[2, 0]])
c = np.trace(R) - 1
# Note: we actually compute double of cos and sin, but arctan2 is invariant to scale
RE += np.arctan2(s, c)
return RE / gtruth_r.shape[0]
def evaluate(opt):
"""Evaluate odometry on the SCARED dataset
"""
assert os.path.isdir(opt.load_weights_folder), \
"Cannot find a folder at {}".format(opt.load_weights_folder)
filenames = readlines(
os.path.join(os.path.dirname(__file__), "splits", "endovis",
"test_files_sequence2.txt"))
dataset = SCAREDRAWDataset(opt.data_path, filenames, opt.height, opt.width,
[0, 1], 4, is_train=False)
dataloader = DataLoader(dataset, opt.batch_size, shuffle=False,
num_workers=opt.num_workers, pin_memory=True, drop_last=False)
pose_encoder_path = os.path.join(opt.load_weights_folder, "pose_encoder.pth")
pose_decoder_path = os.path.join(opt.load_weights_folder, "pose.pth")
pose_encoder = networks.ResnetEncoder(opt.num_layers, False, 2)
pose_encoder.load_state_dict(torch.load(pose_encoder_path))
pose_decoder = networks.PoseDecoder(pose_encoder.num_ch_enc, 1, 2)
pose_decoder.load_state_dict(torch.load(pose_decoder_path))
pose_encoder.cuda()
pose_encoder.eval()
pose_decoder.cuda()
pose_decoder.eval()
pred_poses = []
print("-> Computing pose predictions")
opt.frame_ids = [0, 1] # pose network only takes two frames as input
with torch.no_grad():
for inputs in dataloader:
for key, ipt in inputs.items():
inputs[key] = ipt.cuda()
all_color_aug = torch.cat([inputs[("color", 1, 0)], inputs[("color", 0, 0)]], 1)
features = [pose_encoder(all_color_aug)]
axisangle, translation = pose_decoder(features)
pred_poses.append(
transformation_from_parameters(axisangle[:, 0], translation[:, 0]).cpu().numpy())
pred_poses = np.concatenate(pred_poses)
gt_path = os.path.join(os.path.dirname(__file__), "splits", "endovis", "gt_poses_sq2.npz")
gt_local_poses = np.load(gt_path, fix_imports=True, encoding='latin1')["data"]
ates = []
res = []
num_frames = gt_local_poses.shape[0]
track_length = 5
for i in range(0, num_frames - 1):
local_xyzs = np.array(dump_xyz(pred_poses[i:i + track_length - 1]))
gt_local_xyzs = np.array(dump_xyz(gt_local_poses[i:i + track_length - 1]))
local_rs = np.array(dump_r(pred_poses[i:i + track_length - 1]))
gt_rs = np.array(dump_r(gt_local_poses[i:i + track_length - 1]))
ates.append(compute_ate(gt_local_xyzs, local_xyzs))
res.append(compute_re(local_rs, gt_rs))
print("\n Trajectory error: {:0.4f}, std: {:0.4f}\n".format(np.mean(ates), np.std(ates)))
print("\n Rotation error: {:0.4f}, std: {:0.4f}\n".format(np.mean(res), np.std(res)))
if __name__ == "__main__":
options = MonodepthOptions()
evaluate(options.parse())