-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkMeansClustering.py
69 lines (58 loc) · 2.64 KB
/
kMeansClustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from sklearn.cluster import KMeans
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
class KMeans_clustering:
'''
This is the KMeans_clustering class
'''
def __init__(self,data):
self.data=data
def scaling_features(self):
'''
This function scales the values of Ex-Showroom_Price and Displacement.
Returns : The head of the dataframe after scaling Ex-Showroom_Price and Displacement betwween 0 to 1.
'''
Scaler = MinMaxScaler()
for col in ['Ex-Showroom_Price','Displacement']:
Scaler.fit(self.data[[col]])
self.data[col] = Scaler.transform(self.data[[col]])
return self.data.head()
def sum_square_error(self):
'''
This function calculates Sum of Square Error and helps in finding optimal value of k.
Returns : Saves the figure of the Elbow Plot in the sub folder inside the static folder.
'''
sse = []
k_range = range(1,10)
for k in k_range:
km = KMeans(n_clusters=k)
km.fit(self.data[['Displacement','Ex-Showroom_Price']])
sse.append(km.inertia_)
fig = plt.figure(figsize = (10, 5))
plt.xlabel('k')
plt.ylabel('Sum of Square Error')
plt.title('Elbow Plot')
plt.plot(k_range,sse)
#plt.show()
return plt.savefig("static/sub/elbowPlot.png")
def kmean(self):
'''
This function applies K-Means Clustering on Displacement and Ex-Showroom_Price,where k=3.
Returns : Saves the figure in the sub folder, inside the static folder.
'''
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(self.data[['Displacement','Ex-Showroom_Price']])
self.data['cluster'] = y_predicted
df1 = self.data[self.data.cluster==0]
df2 = self.data[self.data.cluster==1]
df3 = self.data[self.data.cluster==2]
fig = plt.figure(figsize = (10, 5))
plt.scatter(df1['Displacement'],df1['Ex-Showroom_Price'],color='green',label='Cluster-1')
plt.scatter(df2['Displacement'],df2['Ex-Showroom_Price'],color='red',label='Cluster-2')
plt.scatter(df3['Displacement'],df3['Ex-Showroom_Price'],color='yellow',label='Cluster-3')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='black',marker='*',label='centroid')
plt.title('Scatter plot between Ex-Showroom Price and Displacement')
plt.legend()
#plt.show()
return plt.savefig("static/sub/clustering.png")