forked from dennybritz/rnn-tutorial-gru-lstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gru_theano.py
136 lines (114 loc) · 6 KB
/
gru_theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import theano as theano
import theano.tensor as T
from theano.gradient import grad_clip
import time
import operator
class GRUTheano:
def __init__(self, word_dim, hidden_dim=128, bptt_truncate=-1):
# Assign instance variables
self.word_dim = word_dim
self.hidden_dim = hidden_dim
self.bptt_truncate = bptt_truncate
# Initialize the network parameters
E = np.random.uniform(-np.sqrt(1./word_dim), np.sqrt(1./word_dim), (hidden_dim, word_dim))
U = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (6, hidden_dim, hidden_dim))
W = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (6, hidden_dim, hidden_dim))
V = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim))
b = np.zeros((6, hidden_dim))
c = np.zeros(word_dim)
# Theano: Created shared variables
self.E = theano.shared(name='E', value=E.astype(theano.config.floatX))
self.U = theano.shared(name='U', value=U.astype(theano.config.floatX))
self.W = theano.shared(name='W', value=W.astype(theano.config.floatX))
self.V = theano.shared(name='V', value=V.astype(theano.config.floatX))
self.b = theano.shared(name='b', value=b.astype(theano.config.floatX))
self.c = theano.shared(name='c', value=c.astype(theano.config.floatX))
# SGD / rmsprop: Initialize parameters
self.mE = theano.shared(name='mE', value=np.zeros(E.shape).astype(theano.config.floatX))
self.mU = theano.shared(name='mU', value=np.zeros(U.shape).astype(theano.config.floatX))
self.mV = theano.shared(name='mV', value=np.zeros(V.shape).astype(theano.config.floatX))
self.mW = theano.shared(name='mW', value=np.zeros(W.shape).astype(theano.config.floatX))
self.mb = theano.shared(name='mb', value=np.zeros(b.shape).astype(theano.config.floatX))
self.mc = theano.shared(name='mc', value=np.zeros(c.shape).astype(theano.config.floatX))
# We store the Theano graph here
self.theano = {}
self.__theano_build__()
def __theano_build__(self):
E, V, U, W, b, c = self.E, self.V, self.U, self.W, self.b, self.c
x = T.ivector('x')
y = T.ivector('y')
def forward_prop_step(x_t, s_t1_prev, s_t2_prev):
# This is how we calculated the hidden state in a simple RNN. No longer!
# s_t = T.tanh(U[:,x_t] + W.dot(s_t1_prev))
# Word embedding layer
x_e = E[:,x_t]
# GRU Layer 1
z_t1 = T.nnet.hard_sigmoid(U[0].dot(x_e) + W[0].dot(s_t1_prev) + b[0])
r_t1 = T.nnet.hard_sigmoid(U[1].dot(x_e) + W[1].dot(s_t1_prev) + b[1])
c_t1 = T.tanh(U[2].dot(x_e) + W[2].dot(s_t1_prev * r_t1) + b[2])
s_t1 = (T.ones_like(z_t1) - z_t1) * c_t1 + z_t1 * s_t1_prev
# GRU Layer 2
z_t2 = T.nnet.hard_sigmoid(U[3].dot(s_t1) + W[3].dot(s_t2_prev) + b[3])
r_t2 = T.nnet.hard_sigmoid(U[4].dot(s_t1) + W[4].dot(s_t2_prev) + b[4])
c_t2 = T.tanh(U[5].dot(s_t1) + W[5].dot(s_t2_prev * r_t2) + b[5])
s_t2 = (T.ones_like(z_t2) - z_t2) * c_t2 + z_t2 * s_t2_prev
# Final output calculation
# Theano's softmax returns a matrix with one row, we only need the row
o_t = T.nnet.softmax(V.dot(s_t2) + c)[0]
return [o_t, s_t1, s_t2]
[o, s, s2], updates = theano.scan(
forward_prop_step,
sequences=x,
truncate_gradient=self.bptt_truncate,
outputs_info=[None,
dict(initial=T.zeros(self.hidden_dim)),
dict(initial=T.zeros(self.hidden_dim))])
prediction = T.argmax(o, axis=1)
o_error = T.sum(T.nnet.categorical_crossentropy(o, y))
# Total cost (could add regularization here)
cost = o_error
# Gradients
dE = T.grad(cost, E)
dU = T.grad(cost, U)
dW = T.grad(cost, W)
db = T.grad(cost, b)
dV = T.grad(cost, V)
dc = T.grad(cost, c)
# Assign functions
self.predict = theano.function([x], o)
self.predict_class = theano.function([x], prediction)
self.ce_error = theano.function([x, y], cost)
self.bptt = theano.function([x, y], [dE, dU, dW, db, dV, dc])
# SGD parameters
learning_rate = T.scalar('learning_rate')
decay = T.scalar('decay')
# rmsprop cache updates
mE = decay * self.mE + (1 - decay) * dE ** 2
mU = decay * self.mU + (1 - decay) * dU ** 2
mW = decay * self.mW + (1 - decay) * dW ** 2
mV = decay * self.mV + (1 - decay) * dV ** 2
mb = decay * self.mb + (1 - decay) * db ** 2
mc = decay * self.mc + (1 - decay) * dc ** 2
self.sgd_step = theano.function(
[x, y, learning_rate, theano.Param(decay, default=0.9)],
[],
updates=[(E, E - learning_rate * dE / T.sqrt(mE + 1e-6)),
(U, U - learning_rate * dU / T.sqrt(mU + 1e-6)),
(W, W - learning_rate * dW / T.sqrt(mW + 1e-6)),
(V, V - learning_rate * dV / T.sqrt(mV + 1e-6)),
(b, b - learning_rate * db / T.sqrt(mb + 1e-6)),
(c, c - learning_rate * dc / T.sqrt(mc + 1e-6)),
(self.mE, mE),
(self.mU, mU),
(self.mW, mW),
(self.mV, mV),
(self.mb, mb),
(self.mc, mc)
])
def calculate_total_loss(self, X, Y):
return np.sum([self.ce_error(x,y) for x,y in zip(X,Y)])
def calculate_loss(self, X, Y):
# Divide calculate_loss by the number of words
num_words = np.sum([len(y) for y in Y])
return self.calculate_total_loss(X,Y)/float(num_words)