forked from dennybritz/rnn-tutorial-gru-lstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·52 lines (43 loc) · 1.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#! /usr/bin/env python
import sys
import os
import time
import numpy as np
from utils import *
from datetime import datetime
from gru_theano import GRUTheano
LEARNING_RATE = float(os.environ.get("LEARNING_RATE", "0.001"))
VOCABULARY_SIZE = int(os.environ.get("VOCABULARY_SIZE", "2000"))
EMBEDDING_DIM = int(os.environ.get("EMBEDDING_DIM", "48"))
HIDDEN_DIM = int(os.environ.get("HIDDEN_DIM", "128"))
NEPOCH = int(os.environ.get("NEPOCH", "20"))
MODEL_OUTPUT_FILE = os.environ.get("MODEL_OUTPUT_FILE")
INPUT_DATA_FILE = os.environ.get("INPUT_DATA_FILE", "./data/reddit-comments-2015.csv")
PRINT_EVERY = int(os.environ.get("PRINT_EVERY", "25000"))
if not MODEL_OUTPUT_FILE:
ts = datetime.now().strftime("%Y-%m-%d-%H-%M")
MODEL_OUTPUT_FILE = "GRU-%s-%s-%s-%s.dat" % (ts, VOCABULARY_SIZE, EMBEDDING_DIM, HIDDEN_DIM)
# Load data
x_train, y_train, word_to_index, index_to_word = load_data(INPUT_DATA_FILE, VOCABULARY_SIZE)
# Build model
model = GRUTheano(VOCABULARY_SIZE, hidden_dim=HIDDEN_DIM, bptt_truncate=-1)
# Print SGD step time
t1 = time.time()
model.sgd_step(x_train[10], y_train[10], LEARNING_RATE)
t2 = time.time()
print "SGD Step time: %f milliseconds" % ((t2 - t1) * 1000.)
sys.stdout.flush()
# We do this every few examples to understand what's going on
def sgd_callback(model, num_examples_seen):
dt = datetime.now().isoformat()
loss = model.calculate_loss(x_train[:10000], y_train[:10000])
print("\n%s (%d)" % (dt, num_examples_seen))
print("--------------------------------------------------")
print("Loss: %f" % loss)
generate_sentences(model, 10, index_to_word, word_to_index)
save_model_parameters_theano(model, MODEL_OUTPUT_FILE)
print("\n")
sys.stdout.flush()
for epoch in range(NEPOCH):
train_with_sgd(model, x_train, y_train, learning_rate=LEARNING_RATE, nepoch=1, decay=0.9,
callback_every=PRINT_EVERY, callback=sgd_callback)