-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcliff_problem.py
175 lines (150 loc) · 6.05 KB
/
cliff_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import random
import numpy as np
import matplotlib.pyplot as plt
cols = 12
rows = 4
start = (rows-1,0)
goal = (rows-1, cols-1)
class Grid:
# Initialize the grid
def __init__(self):
self.cols = cols
self.rows = rows
# Define the starting point for each iteration
def reset(self):
self.X = 0
self.Y = 0
self.state = np.matrix([self.X, self.Y])
return self.state
# Define the agent's action
def step(self, action):
self.ACTIONS = ["Up", "Down", "Left", "Right"]
action = self.ACTIONS[action]
if action == "Up":
if self.Y < (self.rows - 1):
self.Y += 1
elif action == "Down":
if self.Y > 0:
self.Y -= 1
elif action == "Right":
if self.X < (self.cols - 1):
self.X += 1
elif action == "Left":
if self.X > 0:
self.X -= 1
# Value of reward in each part of the grid
if self._inside_cliff(self.X, self.Y):
reward = -100
self.X = 0
self.Y = 0
else:
reward = -1
self.state = np.matrix([self.X, self.Y])
# The following statement define the goal
if (self.X == (self.cols - 1)) and (self.Y == 0):
done = 1
else:
done = 0
return self.state, reward, done, None
# The following function define the area of the cliff
def _inside_cliff(self, X, Y):
if (Y == 0) and (X > 0) and (X < (self.cols - 1)):
return True
else:
return False
class Agent:
def __init__(self, agent_type = "SARSA"):
self.agent_type = agent_type
self._build_model()
self.learningrate = 0.5 # learning rate
self.discount = 1 # discount factor
self.epsilon = 0.15 #epsilon greedy
def _build_model(self):
# Initialize the q values all with zeros
self.qvalues = np.zeros([cols, rows, 4])
def _choose_action(self, state):
if np.random.rand() <= self.epsilon: #epsilon 0.15 policy
action = random.randrange(4)
else:
action = np.argmax(self.predict(state)) #epsilon greedy policy
return action
def predict(self, state):
ret_val = self.qvalues[state[0, 0], state[0, 1], :]
return ret_val
def init_episode(self, env):
if self.agent_type == "SARSA":
return self._init_episode_sarsa_qlearning(env)
if self.agent_type == "Q-Learning":
return self._init_episode_sarsa_qlearning(env)
def _init_episode_sarsa_qlearning(self, env):
self.state = env.reset()
self.action = self._choose_action(self.state)
def train_step(self, env):
if self.agent_type == "SARSA":
return self._train_step_sarsa(env)
if self.agent_type == "Q-Learning":
return self._train_step_qlearning(env)
def _train_step_sarsa(self, env):
new_state, reward, done, _ = env.step(self.action)
new_action = self._choose_action(new_state)
# Q(S;A)<-Q(S;A) + alfa[R + ganma*Q(S';A') - Q(S;A)]
self.qvalues[self.state[0,0], self.state[0,1], self.action] \
+= self.learningrate* \
(reward + self.discount*self.predict(new_state)[new_action] \
- self.predict(self.state)[self.action])
self.state = new_state
self.action = new_action
return new_state, reward, done, self.action, self.epsilon
def _train_step_qlearning(self, env):
self.action = self._choose_action(self.state)
new_state, reward, done, _ = env.step(self.action)
# Q(S;A)<-Q(S;A) + alfa[R + ganma*maxQ(S';a) - Q(S;A)]
self.qvalues[self.state[0,0], self.state[0,1], self.action] \
+= self.learningrate* \
(reward + self.discount*np.amax(self.predict(new_state)) \
- self.predict(self.state)[self.action])
self.state = new_state
return new_state, reward, done, self.action, self.epsilon
if __name__ == "__main__":
agent_types = ["SARSA","Q-Learning"]
num_runs = 10000
num_episodes = 500
episode_reward_average = {}
episode_reward_average[0] = np.zeros([num_episodes])#average reward for SARSA
episode_reward_average[1] = np.zeros([num_episodes])#average reward for Q-Learning
# Train
for j in range(num_runs):
print("Run #" + str(j))
episode_reward = {}
for i in range(len(agent_types)):
env = Grid()
agent = Agent(agent_types[i])
episode_reward[i] = np.zeros([num_episodes])
for e in range(num_episodes):
state = agent.init_episode(env)
# Here the plot can be added for the initial state
done = False
while not done:
state, reward, done, action, epsilon = agent.train_step(env)
episode_reward[i][e] += reward
if i == 0:
episode_reward_average[0] = np.add(episode_reward_average[0], episode_reward[i])
print(action)
else:
episode_reward_average[1] = np.add(episode_reward_average[1], episode_reward[i])
print(action)
# Get the average
episode_reward_average[0] = np.true_divide(episode_reward_average[0], num_runs)
episode_reward_average[1] = np.true_divide(episode_reward_average[1], num_runs)
print("Total reward for SARSA:", episode_reward_average[0],"N:", num_runs)
print("Total reward for Q-learning:", episode_reward_average[1],"N:", num_runs)
# Plot Rewards
#fig, ax = plt.subplots()
#fig.suptitle('Rewards')
plt.plot(episode_reward_average[1], color='blue', label='qlearning')
plt.plot(episode_reward_average[0], color='orange', label='sarsa')
plt.xlabel("Episode")
plt.ylabel("Reward")
plt.ylim(-125, 0)
plt.legend()
plt.show()