-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDEAP_DE.py
186 lines (150 loc) · 8.05 KB
/
DEAP_DE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import sys
import os
# Dynamically add the root directory to sys.path
# Assumes that 'models' and 'utils' are in the same project root directory
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '.'))
sys.path.insert(0, project_root)
import math
from sklearn.metrics import accuracy_score
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torcheeg import transforms
from torch.utils.data import DataLoader
from torcheeg.datasets import DREAMERDataset
from torcheeg.datasets import DEAPDataset
from torcheeg.datasets.constants import DREAMER_CHANNEL_LOCATION_DICT
from torcheeg.datasets.constants import DREAMER_ADJACENCY_MATRIX
from torcheeg.datasets.constants import DEAP_CHANNEL_LOCATION_DICT
from torcheeg.model_selection import KFoldGroupbyTrial
from torcheeg.model_selection import train_test_split_groupby_trial
from tqdm import tqdm
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# Local Imports
from utils.checkpoint import train_and_save, train_validate_and_save, train_validate_test_and_save, train_validate_test_lrschedule_and_save_
from utils.log import get_logger
from utils.utils import print_var, train_one_epoch, train_one_epoch_lstm, get_num_params, train_one_step_tqdm
from utils.transforms import STFTSpectrogram
from models.cnn import Two_Layer_CNN, Two_Layer_CNN_Pro, Simplified_CNN
from models.rnns import LSTM
from models.cnn_lstm import LSTM_CNN_Model
from models.Tsception import TSCEPTIONModel
from models.YoloV9 import YOLO9_Backbone_Classifier
from models.eegnet import EEGNet_Normal_data
from models.Transformer import VanillaTransformer_time
if __name__ == "__main__":
rng_num = 2024 #122
batch_size = 256
emotion_dim = 'valence' # valence, dominance, or arousal
dataset_name = 'DEAP_DE' # Time data which is stored in memory
root_path = './raw_data/DEAP'
io_path = f'./saves/datasets/{dataset_name}' # IO path to store the dataset
dataset = DEAPDataset( root_path=root_path,
io_path=io_path,
offline_transform=transforms.Compose([
transforms.BandDifferentialEntropy(band_dict={"delta": [1, 4],"theta": [4, 8],\
"alpha": [8, 14],"beta": [14, 31],"gamma": [31, 49]}, \
apply_to_baseline=True),
# transforms.MeanStdNormalize(axis=1, apply_to_baseline=True),# MeanStdNormalize() , MinMaxNormalize()
]),
online_transform=transforms.Compose([
transforms.To2d(apply_to_baseline=True),
transforms.ToTensor(),
]),
label_transform=transforms.Compose([
transforms.Select(emotion_dim),
transforms.Binary(5.0),
]),
overlap = 0, #
io_mode='lmdb',
num_worker=4,
)
print(dataset)
print(dataset[0])
print(dataset[0][0].shape)
print(dataset[0][1])
sys.exit()
# Split train val test
train_dataset, test_dataset = train_test_split_groupby_trial(dataset= dataset, test_size = 0.2, shuffle= True) #, random_state= rng_num)
train_dataset, val_dataset = train_test_split_groupby_trial(dataset= train_dataset, test_size = 0.1, shuffle=True) #, random_state= rng_num)
# Create train/val/test dataloaders
train_loader = DataLoader(train_dataset, batch_size= batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size= batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size= batch_size, shuffle=False)
print("Dataset is ready!")
print(f"Dataset size: {len(dataset)}")
print(f"Train Size: {len(train_dataset)}, Validation Size: {len(val_dataset)} , Test Size: {len(test_dataset)}")
print(f"Input data shape: {dataset[0][0].shape}")
print(f"Output data (one sample): {dataset[0][1]}")
print('*' * 30)
print_var("Number of batches inside train dataloader",len(train_loader))
print_var("Number of batches inside validation dataloader",len(val_loader))
print_var("Number of batches inside test dataloader",len(test_loader))
print('*' * 30)
# ****************** Choose your Model ******************************
# model = Two_Layer_CNN()
# model = Two_Layer_CNN_Pro() ####################w 74.5
# model = Simplified_CNN()
# model = LSTM(128,64,2,1) # IT should be L*F
# model = LSTM(14,256,4,1) # Should take 14 input features not 128 of the length ##############w
# model = LSTM_CNN_Model() ########## 95.5
# model = TSCEPTIONModel() ############
# model = YOLO9_Backbone_Classifier()
# model = EEGNet_Normal_data()
# model = TSCEPTIONModel() #### validation is Ok almost
model = VanillaTransformer_time(num_electrodes=32) ########## GOOD ON THE NEW OVERLAP DATA till 97 96
print(f"Selected model name : {model.__class__.__name__}")
# print(f"Model parameter count: {get_num_params(model,1)}")
print_var("Model is ", model)
print('*' * 30)
# ****************** Choose your Loss Function ******************************
loss_fn = nn.BCEWithLogitsLoss()
# loss_fn = nn.MSELoss()
# ****************** Choose your Optimizer ******************************
optimizer = optim.Adam(model.parameters(), lr=0.1) # lr = 0.0001 0.001
# optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.937)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
num_epochs = 50 # 300 500 600
model_name = "DEAP_" + model.__class__.__name__ + "_no" # NO OVERLAP
print(f"Start training for {num_epochs} epoch")
model = model.to(device)
loss_hist, acc_hist , loss_val_hist , acc_val_hist, loss_test, acc_test = train_validate_test_lrschedule_and_save_(model,
dataset_name,
model_name,
emotion_dim,
train_loader,
val_loader,
test_loader,
optimizer,
loss_fn,
device,
num_epochs=num_epochs,
is_binary=True)
print("Training process is done!")
print(f"Test: LOSS: {loss_test}, ACC: {acc_test}")
print(f"Model parameter count: {get_num_params(model,1)}")
# # Plot Losses
# plt.figure()
# plt.plot(range(len(loss_hist)), loss_hist)
# plt.plot(range(len(loss_val_hist)), loss_val_hist)
# plt.legend(["Train Loss", "Val Loss"], loc="lower right")
# plt.title('Loss over Epochs')
# plt.xlabel('Epoch')
# plt.ylabel('Loss')
# plt.show()
# # plot Accuracies
# plt.figure()
# plt.plot(range(len(acc_hist)), acc_hist)
# plt.plot(range(len(acc_val_hist)), acc_val_hist)
# plt.legend(["Train Acc", "Val Acc"], loc="lower right")
# plt.title('Acc over Epochs')
# plt.xlabel('Epoch')
# plt.ylabel('Acc')
# plt.show()
# transforms.Concatenate([
# transforms.BandDifferentialEntropy(),
# transforms.BandMeanAbsoluteDeviation()])