-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
220 lines (184 loc) · 9.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 10 16:04:43 2020
a new version of training loss
@author: lenovo
"""
import torch
from torch.nn import DataParallel
from network import Att_Encoder, AAD_Gen
from get_feats import ArcFace_Net
from dataloader import SupplyCollate
from metric import loss_hinge_dis, loss_hinge_gen, IdLoss, AttrLoss, RecLoss
from metric import loss_hinge_dis_mse, loss_hinge_gen_mse
from utils import MultiscaleDiscriminator
import torchvision.transforms as trans
import torch.nn as nn
import argparse
import os
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import time
from torch.optim.lr_scheduler import StepLR
from torch.nn.functional import interpolate as downsample
from model import Backbone
from dataloader import FaceEmbed
def train(args):
# gpu init
multi_gpu = False
if len(args.gpus.split(',')) > 1:
multi_gpu = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
D = MultiscaleDiscriminator(input_nc=3, ndf=64, n_layers=3, use_sigmoid=False,norm_layer=torch.nn.InstanceNorm2d) # pix2pix use MSEloss
G = AAD_Gen()
F = Backbone(50, drop_ratio=0.6, mode='ir_se')
F.load_state_dict(torch.load( args.arc_model_path))
E = Att_Encoder()
optimizer_D = torch.optim.Adam(D.parameters(), lr=0.0004, betas=(0.0, 0.999))
optimizer_GE = torch.optim.Adam([{'params': G.parameters()},
{'params': E.parameters()}],
lr=0.0004, betas=(0.0, 0.999))
if multi_gpu:
D = DataParallel(D).to(device)
G = DataParallel(G).to(device)
F = DataParallel(F).to(device)
E = DataParallel(E).to(device)
else:
D = D.to(device)
G = G.to(device)
F = F.to(device)
E = E.to(device)
if args.resume:
if os.path.isfile(args.resume_model_path):
print("Loading checkpoint from {}". format(args.resume_model_path))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint["epoch"]
D.load_state_dict(checkpoint["state_dict_D"])
G.load_state_dict(checkpoint["state_dict_G"])
E.load_state_dict(checkpoint["state_dict_E"])
# optimizer_G.load_state_dict(checkpoint['optimizer_G'])
optimizer_D.load_state_dict(checkpoint['optimizer_D'])
optimizer_GE.load_state_dict(checkpoint['optimizer_GE'])
else:
print('Cannot found checkpoint {}'.format(args.resume_model_path))
else:
args.start_epoch = 1
def print_with_time(string):
print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) + string)
def weights_init(m):
classname = m.__class__.__name__
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, 0.0, 0.02)
if classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def set_requires_grad( nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def trans_batch(batch):
t = trans.Compose([trans.ToPILImage(), trans.Resize((112,112)), trans.ToTensor()])
bs = batch.shape[0]
res = torch.ones(bs,3,112,112).type_as(batch)
for i in range(bs):
res[i] = t(batch[i].cpu())
return res
set_requires_grad(F, requires_grad=False)
data_transform = trans.Compose([
trans.ToTensor(),
trans.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
#dataset = ImageFolder(args.data_path, transform=data_transform)
dataset = FaceEmbed(args.data_path)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
D.apply(weights_init)
G.apply(weights_init)
E.apply(weights_init)
for epoch in range(args.start_epoch, args.total_epoch+1):
D.train()
G.train()
F.eval() # Only extract features! # input dim=3,256,256 out dim=256 !
E.train()
for batch_idx, data in enumerate(data_loader):
time_curr = time.time()
iteration = (epoch - 1) * len(data_loader) + batch_idx
try:
source,target, label = data
source = source.to(device)
target =target.to(device)
label = torch.LongTensor(label).to(device)
#Zid =F(trans_batch(source)) # bs, 512
Zid = F(downsample(source[:,:,50:-10, 30:-30] , size=(112,112)))
Zatt = E(target) # list:8 each:bs,,,
Yst0 = G(Zid, Zatt) # bs,3,256,256
# train discriminators
pred_gen = D(Yst0.detach())
#pred_gen = list(map(lambda x: x[0].detach(), pred_gen))
pred_real = D(target)
optimizer_D.zero_grad()
loss_real, loss_fake = loss_hinge_dis()(pred_gen, pred_real)
L_dis = loss_real + loss_fake
# if batch_idx%3==0:
L_dis.backward()
optimizer_D.step()
# train generators
pred_gen = D(Yst0)
L_gen = loss_hinge_gen()(pred_gen)
#L_id = IdLoss()(F(trans_batch(Yst0)), Zid)
L_id = IdLoss()(F(downsample(Yst0[:,:,50:-10, 30:-30] , size=(112,112))), Zid)
#Zatt = list(map(lambda x: x.detach(), Zatt))
L_att = AttrLoss()( E(Yst0), Zatt)
L_Rec = RecLoss()(Yst0, target, label)
Loss = (L_gen + 10*L_att + 5*L_id + 10*L_Rec).to(device)
optimizer_GE.zero_grad()
Loss.backward()
optimizer_GE.step()
except Exception as e:
print(e)
continue
if batch_idx % args.log_interval == 0 or batch_idx==20:
time_used = time.time() - time_curr
print_with_time(
'Train Epoch: {} [{}/{} ({:.0f}%)], L_dis:{:.4f}, loss_real:{:.4f}, loss_fake:{:.4f}, Loss:{:.4f}, L_gen:{:.4f}, L_id:{:.4f}, L_att:{:.4f}, L_Rec:{:.4f}'.format(
epoch, batch_idx * len(data), len(data_loader.dataset), 100. * batch_idx *len(data)/ len(data_loader.dataset),
L_dis.item(), loss_real.item(), loss_fake.item(), Loss.item(), L_gen.item(), 5*L_id.item(),10* L_att.item(), 10*L_Rec)
)
time_curr = time.time()
if epoch % args.save_interval == 0: #or batch_idx*len(data) % 350004==0:
state = {
"epoch": epoch,
"state_dict_D": D.state_dict(),
"state_dict_G": G.state_dict(),
"state_dict_E": E.state_dict(),
"optimizer_D": optimizer_D.state_dict(),
"optimizer_GE": optimizer_GE.state_dict(),
# "optimizer_E": optimizer_E.state_dict(),
}
filename = "../model/train1_{:03d}_{:03d}.pth.tar".format(epoch, batch_idx*len(data))
torch.save(state, filename)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Pytorch for FaceShifter')
parser.add_argument('--backbone', type=str, default='resnet50', help='resnet18, resnet50, resnet101, resnet152')
parser.add_argument('--arc_model_path', type=str, default='/media/a/HDD/Face_Proj/FaceShifter/src/model_ir_se50.pth', help='path to arcface pretrained model')
parser.add_argument('--feature_dim', type=int, default=512, help='feature dimension, 256 or 512. original is 256 !!!')
parser.add_argument('--data_path', type=str, default = '/media/a/HDD/Face_Proj/vgg_face_dataset/new_images')
parser.add_argument('--batch_size', type=int, default=5, help='batch size')
parser.add_argument('--start_epoch', type=int, default=1, help= 'the start of epoch')
parser.add_argument('--total_epoch', type=int, default=50, help='total epochs')
parser.add_argument('--dis_times', type=int, default=1, help='how often update discriminators ')
parser.add_argument('--gen_times', type=int, default=1, help='how often update generators ')
parser.add_argument('--log_interval', type=int, default=500, help='how many batches to wait before logging training status')
parser.add_argument('--lr_step', type=int, default=10, help= 'lr decay step')
parser.add_argument('--resume', type=int, default=False, help='resume model')
parser.add_argument('--resume_model_path', type=str, default='', help='the model need to be loaded')
parser.add_argument('--save_interval', type=int, default=1, help='how many epochs to save model')
parser.add_argument('--save_path', type=str, default='', help='model save path')
parser.add_argument('--save_dir', type=str, default='./model', help='model save dir')
parser.add_argument('--gpus', type=str, default='0', help='model prefix')
args = parser.parse_args()
train(args)