You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Unsure if this is caused by an issue related to #58, but after a seemingly arbitrary number of steps (~60k) in a slightly modified version of the CatheterBeam example, I see this error:
[WARNING] [LCPConstraintSolver(LCPConstraintSolver)] No convergence in unbuilt nlcp gaussseidel function : error =0.000597259 after 1000 iterations
Process ForkServerProcess-3:
Traceback (most recent call last):
File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/rbasdeo/.local/lib/python3.8/site-packages/stable_baselines3/common/vec_env/subproc_vec_env.py", line 34, in _worker
observation = env.reset()
File "/home/rbasdeo/.local/lib/python3.8/site-packages/gym/wrappers/time_limit.py", line 27, in reset
return self.env.reset(**kwargs)
File "/home/rbasdeo/.local/lib/python3.8/site-packages/gym/wrappers/order_enforcing.py", line 16, in reset
return self.env.reset(**kwargs)
File "/home/rbasdeo/sofaGym/sofaGym_catheter/sofagym/envs/CatheterBeamSingle/CatheterBeamSingleEnv.py", line 75, in reset
super().reset()
File "/home/rbasdeo/sofaGym/sofaGym_catheter/sofagym/AbstractEnv.py", line 380, in reset
self.clean()
File "/home/rbasdeo/sofaGym/sofaGym_catheter/sofagym/AbstractEnv.py", line 276, in clean
clean_registry(self.past_actions)
File "/home/rbasdeo/sofaGym/sofaGym_catheter/sofagym/rpc_server.py", line 539, in clean_registry
actions_to_stateId.pop(str(instances[id]['history']))
KeyError: 'history'
Unsure if this is caused by an issue related to #58, but after a seemingly arbitrary number of steps (~60k) in a slightly modified version of the CatheterBeam example, I see this error:
Stable_baselines params:
DQN:
init_kwargs:
policy: 'MlpPolicy'
learning_rate: 0.0005
buffer_size: 4000
learning_starts: 1000
batch_size: 32
gamma: 1.0
train_freq: (1, 'step')
gradient_steps: 1
replay_buffer_class: null
replay_buffer_kwargs: null
optimize_memory_usage: False
target_update_interval: 500
exploration_fraction: 0.1
exploration_initial_eps: 1.0
exploration_final_eps: 0.02
max_grad_norm: 10
policy_kwargs: "dict(net_arch=[128, 128], optimizer_class=th.optim.Adam)"
device: "auto"
fit_kwargs:
total_timesteps: 3200000
max_episode_steps: 300
eval_freq: 10000
n_eval_episodes: 10
save_freq: 10000
video_length: 500
The text was updated successfully, but these errors were encountered: