-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpongGPT_v3.py
196 lines (168 loc) · 5.83 KB
/
pongGPT_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# 패키지 임포트
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
import threading
##### 중요 환경 변수들 #####
VIDEO_SELECTION = 0 # 0번부터 카메라 포트 찾아서 1씩 올려보기
VIDEO_WIDTH = 1000 # 화면 가로 넓이
WIDTH_CUT = 160
CENTER_LINE = 340 # 세로 센터 라인
NET_LINE = 640 # 네트 라인
CATCH_FRAME = 4
MIN_GAP = 10
ETA_FIX = 80
# 초기화 변수들
ball_in = False
line_on = False
RALLY_COUNT = 0
FINAL_MOVE = 0 # 단위 cm
FINAL_ETA = 0 # 단위 ms
# 주황색 탁구공 HSV 색 범위 지정 (창문쪽 형광등 두 개 키고 문쪽 형광등 한 개 껐을때 기준)
orangeLower = (1, 130, 240)
orangeUpper = (30, 255, 255)
# 파서 코딩 부분
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args = vars(ap.parse_args())
# 데큐 생성
pts = deque(maxlen=args["buffer"])
line_xy = deque(maxlen=2) # 단위 px
time_xy = deque(maxlen=2) # 단위 s
temp_move = deque() # 단위 px
temp_speed = deque() # 단위 px/ms
# Line Activater 쓰레드 함수
def line_activator(ETA):
global line_on
print("Line Activated / Detecting LOCK")
time.sleep(ETA)
line_on = False
print("Line Deactivated / Detecting UNLOCK")
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
# 쓰레드 생성
# 비디오 스트리밍 시작
vs = VideoStream(src=VIDEO_SELECTION).start()
time.sleep(2.0)
# 프레임 단위 무한 루프 영역
while True:
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
if frame is None:
break
# 화면비 (680x750)
frame = imutils.resize(frame, width=VIDEO_WIDTH)
frame = frame[0:750, WIDTH_CUT : 1000 - WIDTH_CUT]
# 영상처리
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, orangeLower, orangeUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
# 감지 했을 경우 (center 좌표 계산됨)
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# 탁구 알고리즘
if line_on == False:
# print(center)
line_xy.append(center)
time_xy.append(time.time())
if len(line_xy) == 2:
if line_xy[0][1] + MIN_GAP < line_xy[1][1]:
temp_move.append(
int(
(1220 - line_xy[0][1])
* (line_xy[0][0] - line_xy[1][0])
/ (line_xy[0][1] - line_xy[1][1])
+ line_xy[0][0]
)
)
temp_speed.append(
int(
np.sqrt(
(line_xy[0][0] - line_xy[1][0]) ** 2
+ (line_xy[0][1] - line_xy[1][1]) ** 2
)
/ ((time_xy[1] - time_xy[0]) * 1000)
)
)
if len(temp_move) == CATCH_FRAME:
# 디버깅
print(temp_speed)
print(line_xy[1])
temp_move.popleft()
temp_speed.popleft()
temp_move_sum = 0
for i in range(CATCH_FRAME - 1):
temp_move_sum += temp_move.popleft()
FINAL_MOVE = int(temp_move_sum / (CATCH_FRAME - 1) * (152.5 / 680))
temp_speed_sum = 0
for i in range(CATCH_FRAME - 1):
temp_speed_sum += temp_speed.popleft()
FINAL_ETA = (
int(
np.sqrt(
(line_xy[1][0] - FINAL_MOVE * (680 / 152.5)) ** 2
+ (line_xy[1][1] - 1220) ** 2
)
/ (temp_speed_sum / (CATCH_FRAME - 1))
)
+ ETA_FIX
)
print(
"FINAL MOVE : {0}cm / FINAL ETA : {1}ms".format(
FINAL_MOVE, FINAL_ETA, FINAL_ANGLE
)
)
line_on = True
newline_act = threading.Thread(
target=line_activator, args=(FINAL_ETA / 1000,), daemon=True
)
newline_act.start()
# 트레킹 레드라인 코드
pts.appendleft(center)
for i in range(1, len(pts)):
if pts[i - 1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# 화면 표시 선 코드
# 중앙선
cv2.line(frame, (CENTER_LINE, 0), (CENTER_LINE, NET_LINE), (255, 255, 255), 2)
# 네트선
cv2.line(frame, (0, NET_LINE), (VIDEO_WIDTH, NET_LINE), (255, 255, 255), 2)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
elif key == ord("r"):
line_xy.clear()
time_xy.clear()
temp_move.clear()
temp_speed.clear()
line_on = False
FINAL_MOVE = None
FINAL_ETA = None
# if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vs.stop()
# otherwise, release the camera
else:
vs.release()
# close all windows
cv2.destroyAllWindows()