Skip to content

Latest commit

 

History

History
240 lines (190 loc) · 5.3 KB

README.MD

File metadata and controls

240 lines (190 loc) · 5.3 KB

Pospine - Tensorflow.js Project

About

This project was started to help people correct their posture using Tensorflow.js & PoseNet. It was designed to work in low-end environments such as mobile web browsers. No installation is required and Chrome browser is recommended.

Updates

  • Data collecting tool with PoseNet / ml5.js / p5.js (web)
  • Data normalization/processing tool (node.js)
  • Tensorflow.js Layers API model

Usage

preparing...

Datasets

Collecting

PoseNet returns the position of the joint in the image via webcam. Press the space bar or click capture start button to save the position data. Load datasets from local memory and save it to local storage via control panel.

data-collecting-tool

// with an array every time new poses are detected
poseNet.on("pose", function (results) {
    poses = results;

    if (state) {
        while (batchCount < 1) {
            proccessData(poses);
            batchCount++;
        }
        state = false;
        batchCount = 0;
    }
});
// ml5.js pose data structure
[
  {
    pose: {
      keypoints: [{position:{x,y}, score, part}, ...],
      leftAngle:{x, y, confidence},
      leftEar:{x, y, confidence},
      leftElbow:{x, y, confidence},
      ...
    }
  }
]

Note: You can use our data from here

Processing

Below methods process data into formatted data and store to local storage.

// process data(x, y)
function proccessData(data) {
    let pose = data[0].pose;
    let keyPoints = pose.keypoints;
    let tmpArray = [];

    keyPoints.forEach((point) => {
        tmpArray.push(point.position.x);
        tmpArray.push(point.position.y);
    });

    saveData(tmpArray, truthLabel);
    printOutput(data);
}
// save data to localstorage
function saveData(feature, label) {
    let loadedFeatureData = JSON.parse(localStorage.getItem("featureData"));
    if (loadedFeatureData === null) {
        loadedFeatureData = [];
    }
    loadedFeatureData.push(feature);
    localStorage.setItem("featureData", JSON.stringify(loadedFeatureData));

    let loadedLabelData = JSON.parse(localStorage.getItem("labelData"));
    if (loadedLabelData === null) {
        loadedLabelData = [];
    }
    loadedLabelData.push(label);
    localStorage.setItem("labelData", JSON.stringify(loadedLabelData));
}
// data.json structure
{
    "data": {
        "feature": [
            [
                272.6723803805934,
                119.64644257660507,
                305.40802833171205,
                101.53660399440662,
                269.2220368737841,
                100.57816679839493,
                363.92106943093387,
                ...
        ], ...
        "label": [
         	1, 1, 1, ... , 0, 0
        ]
    }
}

Normalization

Normalize the features of the input data to values between 0 and 1. And split dataset into training data and validation data.

// save information for feature use
let normalizationInfo = {
    min: featureMin,
    max: featureMax,
    size: data.feature.length,
};
fs.writeFileSync("../data/normalize.json", JSON.stringify(normalizationInfo));

// normalize feature data (range 0-1 scaling)
let features = data.feature;
let normalizedFeatures = features.map((e, i) => {
    return e.map((e, i) => {
        return (e - featureMin) / (featureMax - featureMin);
    });
});
// save normalized data
let normalizedTrainingData = { // train set
    data: {
        feature: trainingFeatures,
        label: trainingLabels,
    },
};
fs.writeFileSync("../data/train-data.json", JSON.stringify(normalizedTrainingData));

let normalizedValidationData = { // validation set
    data: {
        feature: validationFeatures,
        label: validationLabels,
    },
};
fs.writeFileSync("../data/validation-data.json", JSON.stringify(normalizedValidationData));
// train-data.json structure
{
    "data": {
        "feature": [
            [
                0.43020466647188926,
                0.22080847465479406,
                0.4749991641629251,
                ...
        ], ...
        "label": [
         	1, 1, 1, ... , 0, 0
        ]
    }
}
    
// validation-data.json structure
{
    "data": {
        "feature": [
            [
                0.4831963990422944,
                0.328506640706061,
                0.5297701247859256,
                ...
        ], ...
        "label": [
         	1, 1, 1, ... , 0, 0
        ]
    }
}

Note: For the future use of model on external apps, save normalization info.

// normalization info (of original datasets)
{
    "min":-41.719547969357976,
    "max":689.0766354571984,
    "size":1357
}

Contributors

Feel free to contribute in any of the ways outlined:

  • Submit issues/pull requests
  • Tell us how you're using this plugin in your project

@yuiopna, @yewl1110, @gksrlf