-
Notifications
You must be signed in to change notification settings - Fork 12
/
_pylab_tweaks.py
2162 lines (1581 loc) · 60.7 KB
/
_pylab_tweaks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import sys as _sys
import os as _os
import pylab as _pylab
import time as _time
import matplotlib as _mpl
import numpy as _n
try:
from . import _functions as _fun
from . import _pylab_colormap
except:
import _functions as _fun
import _pylab_colormap
import spinmob as _s
# Python 3 or 2?
if _sys.version_info[0] >= 3: import _thread as _thread
else: import thread as _thread
image_colormap = _pylab_colormap.colormap_interface
from matplotlib.font_manager import FontProperties as _FontProperties
if __name__ == '__main__':
from . import _settings
_settings = _settings.settings()
line_attributes = ["linestyle","linewidth","color","marker","markersize","markerfacecolor","markeredgewidth","markeredgecolor"]
image_undo_list = []
# Pylab's ginput function.
ginput = _pylab.ginput
def add_text(text, x=0.01, y=0.01, axes="gca", draw=True, **kwargs):
"""
Adds text to the axes at the specified position.
**kwargs go to the axes.text() function.
"""
if axes=="gca": axes = _pylab.gca()
axes.text(x, y, text, transform=axes.transAxes, **kwargs)
if draw: _pylab.draw()
def auto_zoom(zoomx=True, zoomy=True, axes="gca", x_space=0.04, y_space=0.04, draw=True):
"""
Looks at the bounds of the plotted data and zooms accordingly, leaving some
space around the data.
"""
# Disable auto-updating by default.
_pylab.ioff()
if axes=="gca": axes = _pylab.gca()
# get the current bounds
x10, x20 = axes.get_xlim()
y10, y20 = axes.get_ylim()
# Autoscale using pylab's technique (catches the error bars!)
axes.autoscale(enable=True, tight=True)
# Add padding
if axes.get_xscale() == 'linear':
x1, x2 = axes.get_xlim()
xc = 0.5*(x1+x2)
xs = 0.5*(1+x_space)*(x2-x1)
axes.set_xlim(xc-xs, xc+xs)
if axes.get_yscale() == 'linear':
y1, y2 = axes.get_ylim()
yc = 0.5*(y1+y2)
ys = 0.5*(1+y_space)*(y2-y1)
axes.set_ylim(yc-ys, yc+ys)
# If we weren't supposed to zoom x or y, reset them
if not zoomx: axes.set_xlim(x10, x20)
if not zoomy: axes.set_ylim(y10, y20)
if draw:
_pylab.ion()
_pylab.draw()
## # get all the lines
## lines = a.get_lines()
##
## # get the current limits, in case we're not zooming one of the axes.
## x1, x2 = a.get_xlim()
## y1, y2 = a.get_ylim()
##
## xdata = []
## ydata = []
## for n in range(0,len(lines)):
## # store this line's data
##
## # build up a huge data array
## if isinstance(lines[n], _mpl.lines.Line2D):
## x, y = lines[n].get_data()
##
## for n in range(len(x)):
## # if we're not zooming x and we're in range, append
## if not zoomx and x[n] >= x1 and x[n] <= x2:
## xdata.append(x[n])
## ydata.append(y[n])
##
## elif not zoomy and y[n] >= y1 and y[n] <= y2:
## xdata.append(x[n])
## ydata.append(y[n])
##
## elif zoomy and zoomx:
## xdata.append(x[n])
## ydata.append(y[n])
##
## if len(xdata):
## xmin = min(xdata)
## xmax = max(xdata)
## ymin = min(ydata)
## ymax = max(ydata)
##
## # we want a 3% white space boundary surrounding the data in our plot
## # so set the range accordingly
## if zoomx: a.set_xlim(xmin-x_space*(xmax-xmin), xmax+x_space*(xmax-xmin))
## if zoomy: a.set_ylim(ymin-y_space*(ymax-ymin), ymax+y_space*(ymax-ymin))
##
## if draw:
## _pylab.ion()
## _pylab.draw()
#
# else:
# return
def click_estimate_slope():
"""
Takes two clicks and returns the slope.
Right-click aborts.
"""
c1 = _pylab.ginput()
if len(c1)==0:
return None
c2 = _pylab.ginput()
if len(c2)==0:
return None
return (c1[0][1]-c2[0][1])/(c1[0][0]-c2[0][0])
def click_estimate_curvature():
"""
Takes two clicks and returns the curvature, assuming the first click
was the minimum of a parabola and the second was some other point.
Returns the second derivative of the function giving this parabola.
Right-click aborts.
"""
c1 = _pylab.ginput()
if len(c1)==0:
return None
c2 = _pylab.ginput()
if len(c2)==0:
return None
return 2*(c2[0][1]-c1[0][1])/(c2[0][0]-c1[0][0])**2
def click_estimate_difference():
"""
Takes two clicks and returns the difference vector [dx, dy].
Right-click aborts.
"""
c1 = _pylab.ginput()
if len(c1)==0:
return None
c2 = _pylab.ginput()
if len(c2)==0:
return None
return [c2[0][0]-c1[0][0], c2[0][1]-c1[0][1]]
def copy_figure_to_clipboard(figure='gcf'):
"""
Copies the specified figure to the system clipboard. Specifying 'gcf'
will use the current figure.
"""
try:
import pyqtgraph as _p
# Get the current figure if necessary
if figure is 'gcf': figure = _s.pylab.gcf()
# Store the figure as an image
path = _os.path.join(_s.settings.path_home, "clipboard.png")
figure.savefig(path)
# Set the clipboard. I know, it's weird to use pyqtgraph, but
# This covers both Qt4 and Qt5 with their Qt4 wrapper!
_p.QtGui.QApplication.instance().clipboard().setImage(_p.QtGui.QImage(path))
except:
print("This function currently requires pyqtgraph to be installed.")
def differentiate_shown_data(neighbors=1, fyname=1, **kwargs):
"""
Differentiates the data visible on the specified axes using
fun.derivative_fit() (if neighbors > 0), and derivative() otherwise.
Modifies the visible data using manipulate_shown_data(**kwargs)
"""
if neighbors:
def D(x,y): return _fun.derivative_fit(x,y,neighbors)
else:
def D(x,y): return _fun.derivative(x,y)
if fyname==1: fyname = '$\\partial_{x(\\pm'+str(neighbors)+')}$'
manipulate_shown_data(D, fxname=None, fyname=fyname, **kwargs)
def fit_shown_data(f="a*x+b", p="a=1, b=2", axes="gca", verbose=True, **kwargs):
"""
Fast-and-loos quick fit:
Loops over each line of the supplied axes and fits with the supplied
function (f) and parameters (p). Assumes uniform error and scales this
such that the reduced chi^2 is 1.
Returns a list of fitter objects
**kwargs are sent to _s.data.fitter()
"""
# get the axes
if axes=="gca": axes = _pylab.gca()
# get the range for trimming
_pylab.sca(axes)
xmin,xmax = axes.get_xlim()
ymin,ymax = axes.get_ylim()
# update the kwargs
if 'first_figure' not in kwargs: kwargs['first_figure'] = axes.figure.number+1
# loop over the lines
fitters = []
for l in axes.lines:
# get the trimmed data
x,y = l.get_data()
x,y = _s.fun.trim_data_uber([x,y],[xmin<x,x<xmax,ymin<y,y<ymax])
# create a fitter
fitters.append(_s.data.fitter(**kwargs).set_functions(f=f, p=p))
fitters[-1].set_data(x,y)
fitters[-1].fit()
fitters[-1].autoscale_eydata().fit()
if verbose:
print(fitters[-1])
print("<click the graph to continue>")
if not axes.lines[-1] == l: fitters[-1].ginput(timeout=0)
return fitters
def format_figure(figure=None, tall=False, draw=True, modify_geometry=True):
"""
This formats the figure in a compact way with (hopefully) enough useful
information for printing large data sets. Used mostly for line and scatter
plots with long, information-filled titles.
Chances are somewhat slim this will be ideal for you but it very well might
and is at least a good starting point.
figure=None specify a figure object. None will use gcf()
"""
_pylab.ioff()
if figure == None: figure = _pylab.gcf()
if modify_geometry:
if tall: set_figure_window_geometry(figure, (0,0), (550,700))
else: set_figure_window_geometry(figure, (0,0), (550,450))
legend_position=1.01
# first, find overall bounds of all axes.
ymin = 1.0
ymax = 0.0
xmin = 1.0
xmax = 0.0
for axes in figure.get_axes():
(x,y,dx,dy) = axes.get_position().bounds
if y < ymin: ymin = y
if y+dy > ymax: ymax = y+dy
if x < xmin: xmin = x
if x+dx > xmax: xmax = x+dx
# Fraction of the figure's width and height to use for all the plots.
w = 0.55
h = 0.70
# buffers on left and bottom edges
bb = 0.15
bl = 0.15
xscale = w / (xmax-xmin)
yscale = h / (ymax-ymin)
# save this for resetting
current_axes = _pylab.gca()
# loop over the axes
for axes in figure.get_axes():
# Get the axes bounds
(x,y,dx,dy) = axes.get_position().bounds
y = bb + (y-ymin)*yscale
dy = dy * yscale
x = bl + (x-xmin)*xscale
dx = dx * xscale
axes.set_position([x,y,dx,dy])
# set the position of the legend
_pylab.axes(axes) # set the current axes
if len(axes.lines)>0:
_pylab.legend(loc=[legend_position, 0], borderpad=0.5, prop=_FontProperties(size=_s.settings['font_size_legend']))
# set the label spacing in the legend
if axes.get_legend():
axes.get_legend().labelsep = 0.01
axes.get_legend().set_visible(1)
# set up the title label
axes.title.set_horizontalalignment('right')
axes.title.set_size(8)
axes.title.set_position([1.5,1.02])
axes.title.set_visible(1)
axes.title.set_fontsize(_s.settings['font_size'])
#axes.yaxis.label.set_horizontalalignment('center')
#axes.xaxis.label.set_horizontalalignment('center')
# Axes labels
axes.xaxis.label.set_fontsize(_s.settings['font_size'])
axes.yaxis.label.set_fontsize(_s.settings['font_size'])
_pylab.axes(current_axes)
if draw:
_pylab.ion()
_pylab.draw()
def get_figure_window(figure='gcf'):
"""
This will search through the windows and return the one containing the figure
"""
if figure == 'gcf': figure = _pylab.gcf()
return figure.canvas.GetParent()
def get_axes_limits(axes='gca'):
"""
This returns (xmin, xmax, ymin, ymax) for the supplied (or current) axes.
"""
if axes == 'gca': axes = _pylab.gca()
xlim = axes.get_xlim()
ylim = axes.get_ylim()
return (xlim[0],xlim[1],ylim[0],ylim[1])
def get_figure_window_geometry(fig='gcf'):
"""
This will currently only work for Qt4Agg and WXAgg backends.
Returns position, size
postion = [x, y]
size = [width, height]
fig can be 'gcf', a number, or a figure object.
"""
if type(fig)==str: fig = _pylab.gcf()
elif _fun.is_a_number(fig): fig = _pylab.figure(fig)
# Qt4Agg backend. Probably would work for other Qt stuff
if _pylab.get_backend().find('Qt') >= 0:
size = fig.canvas.window().size()
pos = fig.canvas.window().pos()
return [[pos.x(),pos.y()], [size.width(),size.height()]]
else:
print("get_figure_window_geometry() only implemented for QtAgg backend.")
return None
def image_format_figure(figure=None, draw=True):
"""
This formats the figure in a compact way with (hopefully) enough useful
information for printing large data sets. Used mostly for line and scatter
plots with long, information-filled titles.
Chances are somewhat slim this will be ideal for you but it very well might
and is at least a good starting point.
figure=None specify a figure object. None will use gcf()
"""
_pylab.ioff()
if figure == None: figure = _pylab.gcf()
set_figure_window_geometry(figure, (0,0), (550,470))
axes = figure.axes[0]
# set up the title label
axes.title.set_horizontalalignment('right')
axes.title.set_size(8)
axes.title.set_position([1.27,1.02])
axes.title.set_visible(1)
if draw:
_pylab.ion()
_pylab.draw()
def impose_legend_limit(limit=30, axes="gca", **kwargs):
"""
This will erase all but, say, 30 of the legend entries and remake the legend.
You'll probably have to move it back into your favorite position at this point.
"""
if axes=="gca": axes = _pylab.gca()
# make these axes current
_pylab.axes(axes)
# loop over all the lines_pylab.
for n in range(0,len(axes.lines)):
if n > limit-1 and not n==len(axes.lines)-1: axes.lines[n].set_label("_nolegend_")
if n == limit-1 and not n==len(axes.lines)-1: axes.lines[n].set_label("...")
_pylab.legend(**kwargs)
def image_autozoom(axes="gca"):
if axes=="gca": axes = _pylab.gca()
# get the extent
extent = axes.images[0].get_extent()
# rezoom us
axes.set_xlim(extent[0],extent[1])
axes.set_ylim(extent[2],extent[3])
_pylab.draw()
def image_coarsen(xlevel=0, ylevel=0, image="auto", method='mean'):
"""
This will coarsen the image data by binning each xlevel+1 along the x-axis
and each ylevel+1 points along the y-axis
type can be 'average', 'min', or 'max'
"""
if image == "auto": image = _pylab.gca().images[0]
Z = _n.array(image.get_array())
# store this image in the undo list
global image_undo_list
image_undo_list.append([image, Z])
if len(image_undo_list) > 10: image_undo_list.pop(0)
# images have transposed data
image.set_array(_fun.coarsen_matrix(Z, ylevel, xlevel, method))
# update the plot
_pylab.draw()
def image_neighbor_smooth(xlevel=0.2, ylevel=0.2, image="auto"):
"""
This will bleed nearest neighbor pixels into each other with
the specified weight factors.
"""
if image == "auto": image = _pylab.gca().images[0]
Z = _n.array(image.get_array())
# store this image in the undo list
global image_undo_list
image_undo_list.append([image, Z])
if len(image_undo_list) > 10: image_undo_list.pop(0)
# get the diagonal smoothing level (eliptical, and scaled down by distance)
dlevel = ((xlevel**2+ylevel**2)/2.0)**(0.5)
# don't touch the first column
new_Z = [Z[0]*1.0]
for m in range(1,len(Z)-1):
new_Z.append(Z[m]*1.0)
for n in range(1,len(Z[0])-1):
new_Z[-1][n] = (Z[m,n] + xlevel*(Z[m+1,n]+Z[m-1,n]) + ylevel*(Z[m,n+1]+Z[m,n-1]) \
+ dlevel*(Z[m+1,n+1]+Z[m-1,n+1]+Z[m+1,n-1]+Z[m-1,n-1]) ) \
/ (1.0+xlevel*2+ylevel*2 + dlevel*4)
# don't touch the last column
new_Z.append(Z[-1]*1.0)
# images have transposed data
image.set_array(_n.array(new_Z))
# update the plot
_pylab.draw()
def image_undo():
"""
Undoes the last coarsen or smooth command.
"""
if len(image_undo_list) <= 0:
print("no undos in memory")
return
[image, Z] = image_undo_list.pop(-1)
image.set_array(Z)
_pylab.draw()
def image_set_aspect(aspect=1.0, axes="gca"):
"""
sets the aspect ratio of the current zoom level of the imshow image
"""
if axes is "gca": axes = _pylab.gca()
e = axes.get_images()[0].get_extent()
axes.set_aspect(abs((e[1]-e[0])/(e[3]-e[2]))/aspect)
def image_set_extent(x=None, y=None, axes="gca"):
"""
Set's the first image's extent, then redraws.
Examples:
x = [1,4]
y = [33.3, 22]
"""
if axes == "gca": axes = _pylab.gca()
# get the current plot limits
xlim = axes.get_xlim()
ylim = axes.get_ylim()
# get the old extent
extent = axes.images[0].get_extent()
# calculate the fractional extents
x0 = extent[0]
y0 = extent[2]
xwidth = extent[1]-x0
ywidth = extent[3]-y0
frac_x1 = (xlim[0]-x0)/xwidth
frac_x2 = (xlim[1]-x0)/xwidth
frac_y1 = (ylim[0]-y0)/ywidth
frac_y2 = (ylim[1]-y0)/ywidth
# set the new
if not x == None:
extent[0] = x[0]
extent[1] = x[1]
if not y == None:
extent[2] = y[0]
extent[3] = y[1]
# get the new zoom window
x0 = extent[0]
y0 = extent[2]
xwidth = extent[1]-x0
ywidth = extent[3]-y0
x1 = x0 + xwidth*frac_x1
x2 = x0 + xwidth*frac_x2
y1 = y0 + ywidth*frac_y1
y2 = y0 + ywidth*frac_y2
# set the extent
axes.images[0].set_extent(extent)
# rezoom us
axes.set_xlim(x1,x2)
axes.set_ylim(y1,y2)
# draw
image_set_aspect(1.0)
def image_scale(xscale=1.0, yscale=1.0, axes="gca"):
"""
Scales the image extent.
"""
if axes == "gca": axes = _pylab.gca()
e = axes.images[0].get_extent()
x1 = e[0]*xscale
x2 = e[1]*xscale
y1 = e[2]*yscale
y2 = e[3]*yscale
image_set_extent([x1,x2],[y1,y2], axes)
def image_click_xshift(axes = "gca"):
"""
Takes a starting and ending point, then shifts the image y by this amount
"""
if axes == "gca": axes = _pylab.gca()
try:
p1 = _pylab.ginput()
p2 = _pylab.ginput()
xshift = p2[0][0]-p1[0][0]
e = axes.images[0].get_extent()
e[0] = e[0] + xshift
e[1] = e[1] + xshift
axes.images[0].set_extent(e)
_pylab.draw()
except:
print("whoops")
def image_click_yshift(axes = "gca"):
"""
Takes a starting and ending point, then shifts the image y by this amount
"""
if axes == "gca": axes = _pylab.gca()
try:
p1 = _pylab.ginput()
p2 = _pylab.ginput()
yshift = p2[0][1]-p1[0][1]
e = axes.images[0].get_extent()
e[2] = e[2] + yshift
e[3] = e[3] + yshift
axes.images[0].set_extent(e)
_pylab.draw()
except:
print("whoops")
def image_shift(xshift=0, yshift=0, axes="gca"):
"""
This will shift an image to a new location on x and y.
"""
if axes=="gca": axes = _pylab.gca()
e = axes.images[0].get_extent()
e[0] = e[0] + xshift
e[1] = e[1] + xshift
e[2] = e[2] + yshift
e[3] = e[3] + yshift
axes.images[0].set_extent(e)
_pylab.draw()
def image_set_clim(zmin=None, zmax=None, axes="gca"):
"""
This will set the clim (range) of the colorbar.
Setting zmin or zmax to None will not change them.
Setting zmin or zmax to "auto" will auto-scale them to include all the data.
"""
if axes=="gca": axes=_pylab.gca()
image = axes.images[0]
if zmin=='auto': zmin = _n.min(image.get_array())
if zmax=='auto': zmax = _n.max(image.get_array())
if zmin==None: zmin = image.get_clim()[0]
if zmax==None: zmax = image.get_clim()[1]
image.set_clim(zmin, zmax)
_pylab.draw()
def image_sliders(image="top", colormap="_last"):
return "NO!"
def image_ubertidy(figure="gcf", aspect=1.0, fontsize=18, fontweight='bold', fontname='Arial', ylabel_pad=0.007, xlabel_pad=0.010, colorlabel_pad=0.1, borderwidth=3.0, tickwidth=2.0, window_size=(550,500)):
if figure=="gcf": figure = _pylab.gcf()
# do this to both axes
for a in figure.axes:
_pylab.axes(a)
# remove the labels
a.set_title("")
a.set_xlabel("")
a.set_ylabel("")
# thicken the border
# we want thick axis lines
a.spines['top'].set_linewidth(borderwidth)
a.spines['left'].set_linewidth(borderwidth)
a.spines['bottom'].set_linewidth(borderwidth)
a.spines['right'].set_linewidth(borderwidth)
a.set_frame_on(True) # adds a thick border to the colorbar
# these two cover the main plot
_pylab.xticks(fontsize=fontsize, fontweight=fontweight, fontname=fontname)
_pylab.yticks(fontsize=fontsize, fontweight=fontweight, fontname=fontname)
# thicken the tick lines
for l in a.get_xticklines(): l.set_markeredgewidth(tickwidth)
for l in a.get_yticklines(): l.set_markeredgewidth(tickwidth)
# set the aspect and window size
_pylab.axes(figure.axes[0])
image_set_aspect(aspect)
get_figure_window().SetSize(window_size)
# we want to give the labels some breathing room (1% of the data range)
for label in _pylab.xticks()[1]: label.set_y(-xlabel_pad)
for label in _pylab.yticks()[1]: label.set_x(-ylabel_pad)
# need to draw to commit the changes up to this point. Annoying.
_pylab.draw()
# get the bounds of the first axes and come up with corresponding bounds
# for the colorbar
a1 = _pylab.gca()
b = a1.get_position()
aspect = figure.axes[1].get_aspect()
pos = []
pos.append(b.x0+b.width+0.02) # lower left x
pos.append(b.y0) # lower left y
pos.append(b.height/aspect) # width
pos.append(b.height) # height
# switch to the colorbar axes
_pylab.axes(figure.axes[1])
_pylab.gca().set_position(pos)
for label in _pylab.yticks()[1]: label.set_x(1+colorlabel_pad)
# switch back to the main axes
_pylab.axes(figure.axes[0])
_pylab.draw()
def integrate_shown_data(scale=1, fyname=1, autozero=0, **kwargs):
"""
Numerically integrates the data visible on the current/specified axes using
scale*fun.integrate_data(x,y). Modifies the visible data using
manipulate_shown_data(**kwargs)
autozero is the number of data points used to estimate the background
for subtraction. If autozero = 0, no background subtraction is performed.
"""
def I(x,y):
xout, iout = _fun.integrate_data(x, y, autozero=autozero)
print("Total =", scale*iout[-1])
return xout, scale*iout
if fyname==1: fyname = "$"+str(scale)+"\\times \\int dx$"
manipulate_shown_data(I, fxname=None, fyname=fyname, **kwargs)
def is_a_number(s):
try: eval(s); return 1
except: return 0
def manipulate_shown_data(f, input_axes="gca", output_axes=None, fxname=1, fyname=1, clear=1, pause=False, **kwargs):
"""
Loops over the visible data on the specified axes and modifies it based on
the function f(xdata, ydata), which must return new_xdata, new_ydata
input_axes which axes to pull the data from
output_axes which axes to dump the manipulated data (None for new figure)
fxname the name of the function on x
fyname the name of the function on y
1 means "use f.__name__"
0 or None means no change.
otherwise specify a string
**kwargs are sent to axes.plot
"""
# get the axes
if input_axes == "gca": a1 = _pylab.gca()
else: a1 = input_axes
# get the xlimits
xmin, xmax = a1.get_xlim()
# get the name to stick on the x and y labels
if fxname==1: fxname = f.__name__
if fyname==1: fyname = f.__name__
# get the output axes
if output_axes == None:
_pylab.figure(a1.figure.number+1)
a2 = _pylab.axes()
else:
a2 = output_axes
if clear: a2.clear()
# loop over the data
for line in a1.get_lines():
# if it's a line, do the manipulation
if isinstance(line, _mpl.lines.Line2D):
# get the data
x, y = line.get_data()
# trim the data according to the current zoom level
x, y = _fun.trim_data(xmin, xmax, x, y)
# do the manipulation
new_x, new_y = f(x,y)
# plot the new
_s.plot.xy.data(new_x, new_y, clear=0, label=line.get_label().replace("_", "-"), axes=a2, **kwargs)
# pause after each curve if we're supposed to
if pause:
_pylab.draw()
input("<enter> ")
# set the labels and title.
if fxname in [0,None]: a2.set_xlabel(a1.get_xlabel())
else: a2.set_xlabel(fxname+"("+a1.get_xlabel()+")")
if fyname in [0,None]: a2.set_ylabel(a1.get_ylabel())
else: a2.set_ylabel(fyname+"("+a1.get_ylabel()+")")
_pylab.draw()
def manipulate_shown_xdata(fx, fxname=1, **kwargs):
"""
This defines a function f(xdata,ydata) returning fx(xdata), ydata and
runs manipulate_shown_data() with **kwargs sent to this. See
manipulate_shown_data() for more info.
"""
def f(x,y): return fx(x), y
f.__name__ = fx.__name__
manipulate_shown_data(f, fxname=fxname, fyname=None, **kwargs)
def manipulate_shown_ydata(fy, fyname=1, **kwargs):
"""
This defines a function f(xdata,ydata) returning xdata, fy(ydata) and
runs manipulate_shown_data() with **kwargs sent to this. See
manipulate_shown_data() for more info.
"""
def f(x,y): return x, fy(y)
f.__name__ = fy.__name__
manipulate_shown_data(f, fxname=None, fyname=fyname, **kwargs)
def _print_figures(figures, arguments='', file_format='pdf', target_width=8.5, target_height=11.0, target_pad=0.5):
"""
figure printing loop designed to be launched in a separate thread.
"""
for fig in figures:
# get the temp path
temp_path = _os.path.join(_settings.path_home, "temp")
# make the temp folder
_settings.MakeDir(temp_path)
# output the figure to postscript
path = _os.path.join(temp_path, "graph."+file_format)
# get the dimensions of the figure in inches
w=fig.get_figwidth()
h=fig.get_figheight()
# we're printing to 8.5 x 11, so aim for 7.5 x 10
target_height = target_height-2*target_pad
target_width = target_width -2*target_pad
# depending on the aspect we scale by the vertical or horizontal value
if 1.0*h/w > target_height/target_width:
# scale down according to the vertical dimension
new_h = target_height
new_w = w*target_height/h
else:
# scale down according to the hozo dimension
new_w = target_width
new_h = h*target_width/w
fig.set_figwidth(new_w)
fig.set_figheight(new_h)
# save it
fig.savefig(path, bbox_inches=_pylab.matplotlib.transforms.Bbox(
[[-target_pad, new_h-target_height-target_pad],
[target_width-target_pad, target_height-target_pad]]))
# set it back
fig.set_figheight(h)
fig.set_figwidth(w)
if not arguments == '':
c = _settings['instaprint'] + ' ' + arguments + ' "' + path + '"'
else:
c = _settings['instaprint'] + ' "' + path + '"'
print(c)
_os.system(c)
def instaprint(figure='gcf', arguments='', threaded=False, file_format='pdf'):
"""
Quick function that saves the specified figure as a postscript and then
calls the command defined by spinmob.prefs['instaprint'] with this
postscript file as the argument.
figure='gcf' can be 'all', a number, or a list of numbers
"""
global _settings
if 'instaprint' not in _settings.keys():
print("No print command setup. Set the user variable settings['instaprint'].")
return
if figure=='gcf': figure=[_pylab.gcf().number]
elif figure=='all': figure=_pylab.get_fignums()
if not getattr(figure,'__iter__',False): figure = [figure]
print("figure numbers in queue:", figure)
figures=[]
for n in figure: figures.append(_pylab.figure(n))
# now run the ps printing command
if threaded:
# store the canvas type of the last figure
canvas_type = type(figures[-1].canvas)
# launch the aforementioned function as a separate thread
_thread.start_new_thread(_print_figures, (figures,arguments,file_format,))
# wait until the thread is running
_time.sleep(0.25)
# wait until the canvas type has returned to normal
t0 = _time.time()
while not canvas_type == type(figures[-1].canvas) and _time.time()-t0 < 5.0:
_time.sleep(0.1)
if _time.time()-t0 >= 5.0:
print("WARNING: Timed out waiting for canvas to return to original state!")
# bring back the figure and command line
_pylab.draw()
else:
_print_figures(figures, arguments, file_format)
_pylab.draw()