-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_yolo.py
429 lines (351 loc) · 16.2 KB
/
keras_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""YOLO_v2 Model Defined in Keras."""
import sys
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Lambda
from keras.layers.merge import concatenate
from keras.models import Model
from ..utils import compose
from .keras_darknet19 import (DarknetConv2D, DarknetConv2D_BN_Leaky, darknet_body)
sys.path.append('..')
voc_anchors = np.array(
[[1.08, 1.19], [3.42, 4.41], [6.63, 11.38], [9.42, 5.11], [16.62, 10.52]])
voc_classes = [
"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat",
"chair", "cow", "diningtable", "dog", "horse", "motorbike", "person",
"pottedplant", "sheep", "sofa", "train", "tvmonitor"
]
def space_to_depth_x2(x):
"""Thin wrapper for Tensorflow space_to_depth with block_size=2."""
# Import currently required to make Lambda work.
# See: https://github.com/fchollet/keras/issues/5088#issuecomment-273851273
import tensorflow as tf
return tf.space_to_depth(x, block_size=2)
def space_to_depth_x2_output_shape(input_shape):
"""Determine space_to_depth output shape for block_size=2.
Note: For Lambda with TensorFlow backend, output shape may not be needed.
"""
return (input_shape[0], input_shape[1] // 2, input_shape[2] // 2, 4 *
input_shape[3]) if input_shape[1] else (input_shape[0], None, None,
4 * input_shape[3])
def yolo_body(inputs, num_anchors, num_classes):
"""Create YOLO_V2 model CNN body in Keras."""
darknet = Model(inputs, darknet_body()(inputs))
conv20 = compose(
DarknetConv2D_BN_Leaky(1024, (3, 3)),
DarknetConv2D_BN_Leaky(1024, (3, 3)))(darknet.output)
conv13 = darknet.layers[43].output
conv21 = DarknetConv2D_BN_Leaky(64, (1, 1))(conv13)
# TODO: Allow Keras Lambda to use func arguments for output_shape?
conv21_reshaped = Lambda(
space_to_depth_x2,
output_shape=space_to_depth_x2_output_shape,
name='space_to_depth')(conv21)
x = concatenate([conv21_reshaped, conv20])
x = DarknetConv2D_BN_Leaky(1024, (3, 3))(x)
x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x)
return Model(inputs, x)
def yolo_head(feats, anchors, num_classes):
"""Convert final layer features to bounding box parameters.
Parameters
----------
feats : tensor
Final convolutional layer features.
anchors : array-like
Anchor box widths and heights.
num_classes : int
Number of target classes.
Returns
-------
box_xy : tensor
x, y box predictions adjusted by spatial location in conv layer.
box_wh : tensor
w, h box predictions adjusted by anchors and conv spatial resolution.
box_conf : tensor
Probability estimate for whether each box contains any object.
box_class_pred : tensor
Probability distribution estimate for each box over class labels.
"""
num_anchors = len(anchors)
# Reshape to batch, height, width, num_anchors, box_params.
anchors_tensor = K.reshape(K.variable(anchors), [1, 1, 1, num_anchors, 2])
# Static implementation for fixed models.
# TODO: Remove or add option for static implementation.
# _, conv_height, conv_width, _ = K.int_shape(feats)
# conv_dims = K.variable([conv_width, conv_height])
# Dynamic implementation of conv dims for fully convolutional model.
conv_dims = K.shape(feats)[1:3] # assuming channels last
# In YOLO the height index is the inner most iteration.
conv_height_index = K.arange(0, stop=conv_dims[0])
conv_width_index = K.arange(0, stop=conv_dims[1])
conv_height_index = K.tile(conv_height_index, [conv_dims[1]])
# TODO: Repeat_elements and tf.split doesn't support dynamic splits.
# conv_width_index = K.repeat_elements(conv_width_index, conv_dims[1], axis=0)
conv_width_index = K.tile(K.expand_dims(conv_width_index, 0), [conv_dims[0], 1])
conv_width_index = K.flatten(K.transpose(conv_width_index))
conv_index = K.transpose(K.stack([conv_height_index, conv_width_index]))
conv_index = K.reshape(conv_index, [1, conv_dims[0], conv_dims[1], 1, 2])
conv_index = K.cast(conv_index, K.dtype(feats))
feats = K.reshape(feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]), K.dtype(feats))
# Static generation of conv_index:
# conv_index = np.array([_ for _ in np.ndindex(conv_width, conv_height)])
# conv_index = conv_index[:, [1, 0]] # swap columns for YOLO ordering.
# conv_index = K.variable(
# conv_index.reshape(1, conv_height, conv_width, 1, 2))
# feats = Reshape(
# (conv_dims[0], conv_dims[1], num_anchors, num_classes + 5))(feats)
box_confidence = K.sigmoid(feats[..., 4:5])
box_xy = K.sigmoid(feats[..., :2])
box_wh = K.exp(feats[..., 2:4])
box_class_probs = K.softmax(feats[..., 5:])
# Adjust preditions to each spatial grid point and anchor size.
# Note: YOLO iterates over height index before width index.
box_xy = (box_xy + conv_index) / conv_dims
box_wh = box_wh * anchors_tensor / conv_dims
return box_confidence, box_xy, box_wh, box_class_probs
def yolo_boxes_to_corners(box_xy, box_wh):
"""Convert YOLO box predictions to bounding box corners."""
box_mins = box_xy - (box_wh / 2.)
box_maxes = box_xy + (box_wh / 2.)
return K.concatenate([
box_mins[..., 1:2], # y_min
box_mins[..., 0:1], # x_min
box_maxes[..., 1:2], # y_max
box_maxes[..., 0:1] # x_max
])
def yolo_loss(args,
anchors,
num_classes,
rescore_confidence=False,
print_loss=False):
"""YOLO localization loss function.
Parameters
----------
yolo_output : tensor
Final convolutional layer features.
true_boxes : tensor
Ground truth boxes tensor with shape [batch, num_true_boxes, 5]
containing box x_center, y_center, width, height, and class.
detectors_mask : array
0/1 mask for detector positions where there is a matching ground truth.
matching_true_boxes : array
Corresponding ground truth boxes for positive detector positions.
Already adjusted for conv height and width.
anchors : tensor
Anchor boxes for model.
num_classes : int
Number of object classes.
rescore_confidence : bool, default=False
If true then set confidence target to IOU of best predicted box with
the closest matching ground truth box.
print_loss : bool, default=False
If True then use a tf.Print() to print the loss components.
Returns
-------
mean_loss : float
mean localization loss across minibatch
"""
(yolo_output, true_boxes, detectors_mask, matching_true_boxes) = args
num_anchors = len(anchors)
object_scale = 5
no_object_scale = 1
class_scale = 1
coordinates_scale = 1
pred_xy, pred_wh, pred_confidence, pred_class_prob = yolo_head(
yolo_output, anchors, num_classes)
# Unadjusted box predictions for loss.
# TODO: Remove extra computation shared with yolo_head.
yolo_output_shape = K.shape(yolo_output)
feats = K.reshape(yolo_output, [
-1, yolo_output_shape[1], yolo_output_shape[2], num_anchors,
num_classes + 5
])
pred_boxes = K.concatenate(
(K.sigmoid(feats[..., 0:2]), feats[..., 2:4]), axis=-1)
# TODO: Adjust predictions by image width/height for non-square images?
# IOUs may be off due to different aspect ratio.
# Expand pred x,y,w,h to allow comparison with ground truth.
# batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params
pred_xy = K.expand_dims(pred_xy, 4)
pred_wh = K.expand_dims(pred_wh, 4)
pred_wh_half = pred_wh / 2.
pred_mins = pred_xy - pred_wh_half
pred_maxes = pred_xy + pred_wh_half
true_boxes_shape = K.shape(true_boxes)
# batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params
true_boxes = K.reshape(true_boxes, [
true_boxes_shape[0], 1, 1, 1, true_boxes_shape[1], true_boxes_shape[2]
])
true_xy = true_boxes[..., 0:2]
true_wh = true_boxes[..., 2:4]
# Find IOU of each predicted box with each ground truth box.
true_wh_half = true_wh / 2.
true_mins = true_xy - true_wh_half
true_maxes = true_xy + true_wh_half
intersect_mins = K.maximum(pred_mins, true_mins)
intersect_maxes = K.minimum(pred_maxes, true_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]
pred_areas = pred_wh[..., 0] * pred_wh[..., 1]
true_areas = true_wh[..., 0] * true_wh[..., 1]
union_areas = pred_areas + true_areas - intersect_areas
iou_scores = intersect_areas / union_areas
# Best IOUs for each location.
best_ious = K.max(iou_scores, axis=4) # Best IOU scores.
best_ious = K.expand_dims(best_ious)
# A detector has found an object if IOU > thresh for some true box.
object_detections = K.cast(best_ious > 0.6, K.dtype(best_ious))
# TODO: Darknet region training includes extra coordinate loss for early
# training steps to encourage predictions to match anchor priors.
# Determine confidence weights from object and no_object weights.
# NOTE: YOLO does not use binary cross-entropy here.
no_object_weights = (no_object_scale * (1 - object_detections) *
(1 - detectors_mask))
no_objects_loss = no_object_weights * K.square(-pred_confidence)
if rescore_confidence:
objects_loss = (object_scale * detectors_mask *
K.square(best_ious - pred_confidence))
else:
objects_loss = (object_scale * detectors_mask *
K.square(1 - pred_confidence))
confidence_loss = objects_loss + no_objects_loss
# Classification loss for matching detections.
# NOTE: YOLO does not use categorical cross-entropy loss here.
matching_classes = K.cast(matching_true_boxes[..., 4], 'int32')
matching_classes = K.one_hot(matching_classes, num_classes)
classification_loss = (class_scale * detectors_mask *
K.square(matching_classes - pred_class_prob))
# Coordinate loss for matching detection boxes.
matching_boxes = matching_true_boxes[..., 0:4]
coordinates_loss = (coordinates_scale * detectors_mask *
K.square(matching_boxes - pred_boxes))
confidence_loss_sum = K.sum(confidence_loss)
classification_loss_sum = K.sum(classification_loss)
coordinates_loss_sum = K.sum(coordinates_loss)
total_loss = 0.5 * (
confidence_loss_sum + classification_loss_sum + coordinates_loss_sum)
if print_loss:
total_loss = tf.Print(
total_loss, [
total_loss, confidence_loss_sum, classification_loss_sum,
coordinates_loss_sum
],
message='yolo_loss, conf_loss, class_loss, box_coord_loss:')
return total_loss
def yolo(inputs, anchors, num_classes):
"""Generate a complete YOLO_v2 localization model."""
num_anchors = len(anchors)
body = yolo_body(inputs, num_anchors, num_classes)
outputs = yolo_head(body.output, anchors, num_classes)
return outputs
def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold=.6):
"""Filter YOLO boxes based on object and class confidence."""
box_scores = box_confidence * box_class_probs
box_classes = K.argmax(box_scores, axis=-1)
box_class_scores = K.max(box_scores, axis=-1)
prediction_mask = box_class_scores >= threshold
# TODO: Expose tf.boolean_mask to Keras backend?
boxes = tf.boolean_mask(boxes, prediction_mask)
scores = tf.boolean_mask(box_class_scores, prediction_mask)
classes = tf.boolean_mask(box_classes, prediction_mask)
return boxes, scores, classes
def yolo_eval(yolo_outputs,
image_shape,
max_boxes=10,
score_threshold=.6,
iou_threshold=.5):
"""Evaluate YOLO model on given input batch and return filtered boxes."""
box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs
boxes = yolo_boxes_to_corners(box_xy, box_wh)
boxes, scores, classes = yolo_filter_boxes(
box_confidence, boxes, box_class_probs, threshold=score_threshold)
# Scale boxes back to original image shape.
height = image_shape[0]
width = image_shape[1]
image_dims = K.stack([height, width, height, width])
image_dims = K.reshape(image_dims, [1, 4])
boxes = boxes * image_dims
# TODO: Something must be done about this ugly hack!
max_boxes_tensor = K.variable(max_boxes, dtype='int32')
K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
nms_index = tf.image.non_max_suppression(
boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold)
boxes = K.gather(boxes, nms_index)
scores = K.gather(scores, nms_index)
classes = K.gather(classes, nms_index)
return boxes, scores, classes
def preprocess_true_boxes(true_boxes, anchors, image_size):
"""Find detector in YOLO where ground truth box should appear.
Parameters
----------
true_boxes : array
List of ground truth boxes in form of relative x, y, w, h, class.
Relative coordinates are in the range [0, 1] indicating a percentage
of the original image dimensions.
anchors : array
List of anchors in form of w, h.
Anchors are assumed to be in the range [0, conv_size] where conv_size
is the spatial dimension of the final convolutional features.
image_size : array-like
List of image dimensions in form of h, w in pixels.
Returns
-------
detectors_mask : array
0/1 mask for detectors in [conv_height, conv_width, num_anchors, 1]
that should be compared with a matching ground truth box.
matching_true_boxes: array
Same shape as detectors_mask with the corresponding ground truth box
adjusted for comparison with predicted parameters at training time.
"""
height, width = image_size
num_anchors = len(anchors)
# Downsampling factor of 5x 2-stride max_pools == 32.
# TODO: Remove hardcoding of downscaling calculations.
assert height % 32 == 0, 'Image sizes in YOLO_v2 must be multiples of 32.'
assert width % 32 == 0, 'Image sizes in YOLO_v2 must be multiples of 32.'
conv_height = height // 32
conv_width = width // 32
num_box_params = true_boxes.shape[1]
detectors_mask = np.zeros(
(conv_height, conv_width, num_anchors, 1), dtype=np.float32)
matching_true_boxes = np.zeros(
(conv_height, conv_width, num_anchors, num_box_params),
dtype=np.float32)
for box in true_boxes:
# scale box to convolutional feature spatial dimensions
box_class = box[4:5]
box = box[0:4] * np.array(
[conv_width, conv_height, conv_width, conv_height])
i = np.floor(box[1]).astype('int')
j = min(np.floor(box[0]).astype('int'),1)
best_iou = 0
best_anchor = 0
for k, anchor in enumerate(anchors):
# Find IOU between box shifted to origin and anchor box.
box_maxes = box[2:4] / 2.
box_mins = -box_maxes
anchor_maxes = (anchor / 2.)
anchor_mins = -anchor_maxes
intersect_mins = np.maximum(box_mins, anchor_mins)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[0] * intersect_wh[1]
box_area = box[2] * box[3]
anchor_area = anchor[0] * anchor[1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
if iou > best_iou:
best_iou = iou
best_anchor = k
if best_iou > 0:
detectors_mask[i, j, best_anchor] = 1
adjusted_box = np.array(
[
box[0] - j, box[1] - i,
np.log(box[2] / anchors[best_anchor][0]),
np.log(box[3] / anchors[best_anchor][1]), box_class
],
dtype=np.float32)
matching_true_boxes[i, j, best_anchor] = adjusted_box
return detectors_mask, matching_true_boxes