-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathioblocks.py
333 lines (246 loc) · 11.3 KB
/
ioblocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from __future__ import annotations
from functools import partial
from contextlib import nullcontext
from typing import List, Tuple
from math import ceil
import torch as T
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch import Tensor, int32
from torch.amp import autocast
from einops import rearrange, pack, unpack
from utils import si_module, exists, default, maybe
@si_module
class GaussianMixtureIOLayer(nn.Module):
class Config:
latent_dim: int
dim: int
num_components: int
def __init__(self, c: Config):
super().__init__()
self.latent_dim = c.latent_dim
self.num_components = c.num_components
self.input_projection = nn.Linear(c.latent_dim, c.dim)
self.fc_loc = nn.Linear(c.dim, c.num_components * c.latent_dim)
self.fc_scale = nn.Linear(c.dim, c.num_components * c.latent_dim)
self.fc_weight = nn.Linear(c.dim, c.num_components)
def _square_plus(self, x):
return (x + T.sqrt(T.square(x) + 4)) / 2
def input(self, sampled_latents: T.Tensor) -> T.Tensor:
"""Pre-sampled latents T.Tensor (B, L, Z) -> float tensor (B, L, D)"""
hidden = self.input_projection(sampled_latents)
return hidden
def output(self, h: T.Tensor) -> Tuple[T.Tensor, T.Tensor, T.Tensor]:
"""float tensor (B, L, D) -> Tuple of locs, scales, and weights"""
batch_size, seq_len, _ = h.shape
locs = self.fc_loc(h).view(batch_size, seq_len, self.num_components, self.latent_dim)
scales = T.clamp(self._square_plus(self.fc_scale(h)), min=1e-6).view(batch_size, seq_len, self.num_components, self.latent_dim)
weights = self.fc_weight(h).view(batch_size, seq_len, self.num_components)
return (locs, scales, weights)
def loss(self, data, dataHat):
locs, scales, weights = dataHat
log_probs = -0.5 * T.sum(
(data.unsqueeze(-2) - locs).pow(2) / scales.pow(2) +
2 * T.log(scales) +
T.log(T.tensor(2 * T.pi)),
dim=-1
)
log_weights = F.log_softmax(weights, dim=-1)
return -T.logsumexp(log_weights + log_probs, dim=-1)
def temp_sample(self, orig_pdist, temp):
locs, scales, weights = orig_pdist
if temp is None:
component_samples = locs + scales * T.randn_like(scales)
mixture_samples = F.gumbel_softmax(weights, hard=True)
sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2)
elif isinstance(temp, tuple):
assert len(temp) == 2
categorical_temp, gaussian_temp = temp
component_samples = locs + scales * gaussian_temp * T.randn_like(scales)
mixture_samples = F.gumbel_softmax(weights / categorical_temp, hard=True)
sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2)
else:
component_samples = locs + scales * temp * T.randn_like(scales)
mixture_samples = F.gumbel_softmax(weights / temp, hard=True)
sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2)
return sampled
class GPTOutput(nn.Module):
def __init__(self, dim, vocab_size):
super().__init__()
self.output = nn.Linear(dim, vocab_size, bias=False)
def forward(self, x):
return self.output(x)
# helper functions
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def first(l):
return l[0]
def round_up_multiple(num, mult):
return ceil(num / mult) * mult
def get_code_utilization(codes, codebook_size, get_global=False):
if get_global and dist.is_initialized():
world_size = dist.get_world_size()
else:
world_size = 1
if world_size > 1:
gathered_tokens = [T.zeros_like(codes) for _ in range(world_size)]
dist.all_gather(gathered_tokens, codes)
gathered_tokens = T.cat(gathered_tokens, dim=0)
else:
gathered_tokens = codes
unique_tokens = len(T.unique(gathered_tokens))
code_utilization = unique_tokens / min(gathered_tokens.numel(), codebook_size)
return code_utilization
# tensor helpers
def round_ste(z: Tensor) -> Tensor:
"""Round with straight through gradients."""
zhat = z.round()
return z + (zhat - z).detach()
# main class
# lucidrains fsq
@si_module
class FSQ(nn.Module):
@property
def needs_float32_params(self):
return True
class Config:
levels: List[int]
dim: int | None = None
num_codebooks: int = 1
keep_num_codebooks_dim: bool | None = None
scale: float | None = None
allowed_dtypes: Tuple[str, ...] = ('float32', 'float64')
channel_first: bool = False
projection_has_bias: bool = True
return_indices: bool = True
force_quantization_f32: bool = True
use_rms: bool = False
def __init__(self, c: Config):
super().__init__()
_levels = T.tensor(c.levels, dtype=int32)
self.register_buffer("_levels", _levels, persistent = False)
_basis = T.cumprod(T.tensor([1] + c.levels[:-1]), dim=0, dtype=int32)
self.register_buffer("_basis", _basis, persistent = False)
self.scale = c.scale
codebook_dim = len(c.levels)
self.codebook_dim = codebook_dim
effective_codebook_dim = codebook_dim * c.num_codebooks
self.num_codebooks = c.num_codebooks
self.allowed_dtypes = []
for dtype_str in c.allowed_dtypes:
if hasattr(T, dtype_str):
self.allowed_dtypes.append(getattr(T, dtype_str))
else:
raise ValueError(f"Invalid dtype string: {dtype_str}")
self.effective_codebook_dim = effective_codebook_dim
keep_num_codebooks_dim = default(c.keep_num_codebooks_dim, c.num_codebooks > 1)
assert not (c.num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
self.dim = default(c.dim, len(_levels) * c.num_codebooks)
self.channel_first = c.channel_first
has_projections = self.dim != effective_codebook_dim
self.project_in = nn.Linear(self.dim, effective_codebook_dim, bias = c.projection_has_bias) if has_projections else nn.Identity()
self.project_out = nn.Linear(effective_codebook_dim, self.dim, bias = c.projection_has_bias) if has_projections else nn.Identity()
self.has_projections = has_projections
self.return_indices = c.return_indices
if c.return_indices:
self.codebook_size = self._levels.prod().item()
implicit_codebook = self._indices_to_codes(T.arange(self.codebook_size))
self.register_buffer("implicit_codebook", implicit_codebook, persistent = False)
self.allowed_dtypes = c.allowed_dtypes
self.force_quantization_f32 = c.force_quantization_f32
self.latent_loss = None
def latent_metric(self, codes, get_global=False):
return {'code_util_estimate': get_code_utilization(codes, self.codebook_size, get_global)}
def repr_from_latent(self, latent):
return self.indices_to_codes(latent)
def bound(self, z, eps: float = 1e-3):
""" Bound `z`, an array of shape (..., d). """
half_l = (self._levels - 1) * (1 + eps) / 2
offset = T.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).atanh()
return (z + shift).tanh() * half_l - offset
def quantize(self, z):
""" Quantizes z, returns quantized zhat, same shape as z. """
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized):
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat):
half_width = self._levels // 2
return (zhat - half_width) / half_width
def _indices_to_codes(self, indices):
level_indices = self.indices_to_level_indices(indices)
codes = self._scale_and_shift_inverse(level_indices)
return codes
def codes_to_indices(self, zhat):
""" Converts a `code` to an index in the codebook. """
assert zhat.shape[-1] == self.codebook_dim
zhat = self._scale_and_shift(zhat)
return (zhat * self._basis).sum(dim=-1).to(int32)
def indices_to_level_indices(self, indices):
""" Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings """
indices = rearrange(indices, '... -> ... 1')
codes_non_centered = (indices // self._basis) % self._levels
return codes_non_centered
def indices_to_codes(self, indices):
""" Inverse of `codes_to_indices`. """
assert exists(indices)
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
codes = self._indices_to_codes(indices)
if self.keep_num_codebooks_dim:
codes = rearrange(codes, '... c d -> ... (c d)')
codes = self.project_out(codes)
if is_img_or_video or self.channel_first:
codes = rearrange(codes, 'b ... d -> b d ...')
return codes
# @autocast(device_type='cuda', enabled = False)
def forward(self, z, return_codes=False):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension
c - number of codebook dim
"""
is_img_or_video = z.ndim >= 4
need_move_channel_last = is_img_or_video or self.channel_first
# standardize image or video into (batch, seq, dimension)
if need_move_channel_last:
z = rearrange(z, 'b d ... -> b ... d')
z, ps = pack_one(z, 'b * d')
assert z.shape[-1] == self.dim, f'expected dimension of {self.dim} but found dimension of {z.shape[-1]}'
z = self.project_in(z)
z = rearrange(z, 'b n (c d) -> b n c d', c = self.num_codebooks)
# whether to force quantization step to be full precision or not
force_f32 = self.force_quantization_f32
quantization_context = partial(autocast, device_type='cuda', enabled = False) if force_f32 else nullcontext
with quantization_context():
orig_dtype = z.dtype
if force_f32 and orig_dtype not in self.allowed_dtypes:
z = z.float()
codes = self.quantize(z)
# returning indices could be optional
indices = None
if self.return_indices:
indices = self.codes_to_indices(codes)
codes = rearrange(codes, 'b n c d -> b n (c d)')
codes = codes.type(orig_dtype)
# project out
if return_codes:
return codes, indices
out = self.project_out(codes)
# reconstitute image or video dimensions
if need_move_channel_last:
out = unpack_one(out, ps, 'b * d')
out = rearrange(out, 'b ... d -> b d ...')
indices = maybe(unpack_one)(indices, ps, 'b * c')
if not self.keep_num_codebooks_dim and self.return_indices:
indices = maybe(rearrange)(indices, '... 1 -> ...')
# return quantized output and indices
return out, indices