-
Notifications
You must be signed in to change notification settings - Fork 0
/
cal_metric_icm.py
251 lines (196 loc) · 9.98 KB
/
cal_metric_icm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import cv2
import numpy as np
from scipy.ndimage import gaussian_filter
# 计算两个视频帧之间的平均绝对误差(MAD)
def calculate_mad_for_frames(folder1, folder2):
# 获取帧文件列表,并排序确保帧对齐
frames1 = sorted([os.path.join(folder1, f) for f in os.listdir(folder1) if f.endswith('.png')])
frames2 = sorted([os.path.join(folder2, f) for f in os.listdir(folder2) if f.endswith('.png')])
mad_values = []
for frame1_path, frame2_path in zip(frames1[1:], frames2[1:]):
frame1 = cv2.imread(frame1_path, cv2.IMREAD_GRAYSCALE)
frame2 = cv2.imread(frame2_path, cv2.IMREAD_GRAYSCALE)
# 在正中心裁剪参考帧到 1080x1080 以匹配预测帧
h, w = frame1.shape
frame1 = frame1[:, w//2-540:w//2+540]
# 归一化
frame1 = frame1 / 255.0
frame2 = frame2 / 255.0
# 确保两个帧的尺寸一致
if frame1.shape != frame2.shape:
frame1 = cv2.resize(frame1, (frame2.shape[1], frame2.shape[0]))
# 计算每个像素的绝对误差
abs_diff = np.abs(frame1.astype(np.float32) - frame2.astype(np.float32))
# 计算这一帧的平均绝对误差
mad = np.mean(abs_diff)
mad_values.append(mad)
# 计算整个视频的平均绝对误差
overall_mad = np.mean(mad_values)
return overall_mad * 1e3
# 计算两个视频帧之间的均方误差(MSE)
def calculate_mse_for_frames(folder1, folder2):
# 获取帧文件列表,并排序确保帧对齐
frames1 = sorted([os.path.join(folder1, f) for f in os.listdir(folder1) if f.endswith('.png')])
frames2 = sorted([os.path.join(folder2, f) for f in os.listdir(folder2) if f.endswith('.png')])
mse_values = []
for frame1_path, frame2_path in zip(frames1[1:], frames2[1:]):
frame1 = cv2.imread(frame1_path, cv2.IMREAD_GRAYSCALE)
frame2 = cv2.imread(frame2_path, cv2.IMREAD_GRAYSCALE)
# 在正中心裁剪参考帧到 1080x1080 以匹配预测帧
h, w = frame1.shape
frame1 = frame1[:, w//2-540:w//2+540]
# 归一化
frame1 = frame1 / 255.0
frame2 = frame2 / 255.0
# plt.subplot(1, 2, 1)
# plt.imshow(frame1)
# plt.subplot(1, 2, 2)
# plt.imshow(frame2)
# plt.show()
# 确保两个帧的尺寸一致
if frame1.shape != frame2.shape:
frame1 = cv2.resize(frame1, (frame2.shape[1], frame2.shape[0]))
# 计算每个像素的误差
diff = frame1.astype(np.float32) - frame2.astype(np.float32)
# 计算这一帧的均方误差
mse = np.mean(diff ** 2)
mse_values.append(mse)
# 计算整个视频的均方误差
overall_mse = np.mean(mse_values)
return overall_mse * 1e3
# 计算两个视频帧之间的 Grad(Spatial Gradient)
def calculate_grad_for_frames(folder1, folder2):
# 高斯滤波器的标准差
sigma = 1.4
# 乘方次数
q = 2
# 获取帧文件列表,并排序确保帧对齐
frames1 = sorted([os.path.join(folder1, f) for f in os.listdir(folder1) if f.endswith('.png')])
frames2 = sorted([os.path.join(folder2, f) for f in os.listdir(folder2) if f.endswith('.png')])
grad_values = []
for frame1_path, frame2_path in zip(frames1[1:], frames2[1:]):
frame1 = cv2.imread(frame1_path, cv2.IMREAD_GRAYSCALE)
frame2 = cv2.imread(frame2_path, cv2.IMREAD_GRAYSCALE)
# 在正中心裁剪参考帧到 1080x1080 以匹配预测帧
h, w = frame1.shape
frame1 = frame1[:, w//2-540:w//2+540]
# 在正中心裁剪参考帧到 1080x1080 以匹配预测帧
h, w = frame1.shape
frame1 = frame1[h//2-540:h//2+540, w//2-540:w//2+540]
# 归一化
frame1 = frame1 / 255.0
frame2 = frame2 / 255.0
# 确保两个帧的尺寸一致
if frame1.shape != frame2.shape:
frame1 = cv2.resize(frame1, (frame2.shape[1], frame2.shape[0]))
# 计算每个像素的绝对梯度误差
pred_grad = gaussian_filter(frame1.astype(np.float32), sigma, order=1)
ref_grad = gaussian_filter(frame2.astype(np.float32), sigma, order=1)
diff = np.abs(pred_grad - ref_grad)
# 计算这一帧的绝对误差
grad = np.sum(diff ** q)
grad_values.append(grad)
# 计算整个视频的平均绝对误差
overall_grad = np.mean(grad_values)
return overall_grad
# 计算两个视频帧之间的 Connectivity
def calculate_connectivity_for_frames(folder1, folder2):
# 设置阈值步长
step = 0.1
# 设置阈值
theta = 0.15
# 乘方次数
p = 1
# 获取帧文件列表,并排序确保帧对齐
frames1 = sorted([os.path.join(folder1, f) for f in os.listdir(folder1) if f.endswith('.png')])
frames2 = sorted([os.path.join(folder2, f) for f in os.listdir(folder2) if f.endswith('.png')])
connectivity_values = []
for frame1_path, frame2_path in zip(frames1[1:], frames2[1:]):
frame1 = cv2.imread(frame1_path, cv2.IMREAD_GRAYSCALE)
frame2 = cv2.imread(frame2_path, cv2.IMREAD_GRAYSCALE)
# 在正中心裁剪参考帧到 1080x1080 以匹配预测帧
h, w = frame1.shape
frame1 = frame1[:, w//2-540:w//2+540]
# 归一化
frame1 = frame1 / 255.0
frame2 = frame2 / 255.0
# 确保两个帧的尺寸一致
if frame1.shape != frame2.shape:
frame1 = cv2.resize(frame1, (frame2.shape[1], frame2.shape[0]))
# 生成阈值数组和初始阈值映射
thresh_steps = np.arange(0, 1 + step, step)
round_down_map = -np.ones_like(frame1)
# 逐步调整阈值,并计算在当前阈值下预测和真实掩码的交集
for i in range(1, len(thresh_steps)):
true_thresh = frame1 >= thresh_steps[i]
pred_thresh = frame2 >= thresh_steps[i]
intersection = (true_thresh & pred_thresh).astype(np.uint8)
# 对交集进行连通区域分析,获取每个连通区域的大小
_, output, stats, _ = cv2.connectedComponentsWithStats(intersection, connectivity=4)
size = stats[1:, -1]
# 选择最大的连通区域作为前景
omega = np.zeros_like(frame1)
if len(size) != 0:
max_id = np.argmax(size)
omega[output == max_id + 1] = 1
# 更新阈值映射
mask = (round_down_map == -1) & (omega == 0)
round_down_map[mask] = thresh_steps[i - 1]
# 处理剩余的像素
round_down_map[round_down_map == -1] = 1
# 计算真实和预测的差异
true_diff = frame1 - round_down_map
pred_diff = frame2 - round_down_map
# 计算真实和预测的连通度
true_phi = 1 - true_diff * (true_diff >= theta)
pred_phi = 1 - pred_diff * (pred_diff >= theta)
connectivity_error = np.abs(true_phi - pred_phi) ** p
connectivity_values.append(connectivity_error)
# 计算整个视频的平均绝对误差
overall_connectivity = np.mean(connectivity_values)
return overall_connectivity * 1e3
# 计算两个视频帧之间的 dtSSD
def calculate_dtSSD_for_frames(folder1, folder2):
# 获取帧文件列表,并排序确保帧对齐
frames1 = sorted([os.path.join(folder1, f) for f in os.listdir(folder1) if f.endswith('.png')])
frames2 = sorted([os.path.join(folder2, f) for f in os.listdir(folder2) if f.endswith('.png')])
dtSSD_values = []
for pre_frame1_path, pre_frame2_path, frame1_path, frame2_path in zip(frames1[:-1], frames2[:-1], frames1[1:], frames2[1:]):
pre_frame1 = cv2.imread(pre_frame1_path, cv2.IMREAD_GRAYSCALE)
pre_frame2 = cv2.imread(pre_frame2_path, cv2.IMREAD_GRAYSCALE)
frame1 = cv2.imread(frame1_path, cv2.IMREAD_GRAYSCALE)
frame2 = cv2.imread(frame2_path, cv2.IMREAD_GRAYSCALE)
# 在正中心裁剪参考帧到 1080x1080 以匹配预测帧
h, w = frame1.shape
pre_frame1 = pre_frame1[:, w//2-540:w//2+540]
frame1 = frame1[:, w//2-540:w//2+540]
# 归一化
pre_frame1 = pre_frame1 / 255.0
pre_frame2 = pre_frame2 / 255.0
frame1 = frame1 / 255.0
frame2 = frame2 / 255.0
# 确保两个帧的尺寸一致
if pre_frame1.shape != pre_frame2.shape:
pre_frame1 = cv2.resize(pre_frame1, (pre_frame2.shape[1], pre_frame2.shape[0]))
if frame1.shape != frame2.shape:
frame1 = cv2.resize(frame1, (frame2.shape[1], frame2.shape[0]))
# 计算每一帧与前一帧的差异(差分)
dtSSD = ((frame1 - pre_frame1) - (frame2 - pre_frame2)) ** 2
dtSSD = np.sqrt(np.mean(dtSSD))
dtSSD_values.append(dtSSD)
# 计算整个视频的均方误差
overall_dtSSD = np.mean(dtSSD_values)
return overall_dtSSD * 1e2
ref_folder = 'Interstellar/alpha'
pred_folder = 'in_context_matting_results'
mad = calculate_mad_for_frames(ref_folder, pred_folder)
print(f'两个 alpha matte 视频之间的平均绝对误差(MAD)为:{mad}')
mse = calculate_mse_for_frames(ref_folder, pred_folder)
print(f'两个 alpha matte 视频之间的均方误差(MSE)为:{mse}')
grad = calculate_grad_for_frames(ref_folder, pred_folder)
print(f'两个 alpha matte 视频之间的 Grad 为:{grad}')
connectivity = calculate_connectivity_for_frames(ref_folder, pred_folder)
print(f'两个 alpha matte 视频之间的 Connectivity 为:{connectivity}')
dtSSD = calculate_dtSSD_for_frames(ref_folder, pred_folder)
print(f'两个 alpha matte 视频之间的 dtSSD 为:{dtSSD}')