diff --git a/spatialdm/utils.py b/spatialdm/utils.py index dac627b..c7c9176 100644 --- a/spatialdm/utils.py +++ b/spatialdm/utils.py @@ -175,7 +175,7 @@ def pair_selection_matrix(adata, n_perm, sel_ind, method): # averaged ligand values L1 = [pd.Series(x[0]).dropna().values for x in ligand.values] - L_mat = [adata[:, L1[l]].X.astype(np.float)[:, 0] for l in range(len(L1))] + L_mat = [adata[:, L1[l]].X.astype(np.float16)[:, 0] for l in range(len(L1))] for i, k in enumerate(ligand.index): if len(ligand.loc[k].dropna()) > 1: if adata.uns['mean'] == 'geometric': @@ -185,7 +185,7 @@ def pair_selection_matrix(adata, n_perm, sel_ind, method): # averaged receptor values R1 = [pd.Series(x[0]).dropna().values for x in receptor.values] - R_mat = [adata[:, R1[r]].X.astype(np.float)[:, 0] for r in range(len(R1))] + R_mat = [adata[:, R1[r]].X.astype(np.float16)[:, 0] for r in range(len(R1))] for i, k in enumerate(receptor.index): if len(receptor.loc[k].dropna()) > 1: if adata.uns['mean'] == 'geometric': @@ -248,7 +248,7 @@ def spot_selection_matrix(adata, ligand, receptor, ind, n_perm, method, scale_X= if adata.uns['mean'] == 'geometric': from scipy.stats.mstats import gmean L1 = [pd.Series(x[0]).dropna().values for x in ligand.values] - L_mat0 = [raw_norm[:, L1[l]].X.A.astype(np.float)[:, 0] for l in range(len(L1))] + L_mat0 = [raw_norm[:, L1[l]].X.A.astype(np.float16)[:, 0] for l in range(len(L1))] for i, k in enumerate(ligand.index): if len(ligand.loc[k].dropna()) > 1: if adata.uns['mean'] == 'geometric': @@ -258,7 +258,7 @@ def spot_selection_matrix(adata, ligand, receptor, ind, n_perm, method, scale_X= # averaged receptor values R1 = [pd.Series(x[0]).dropna().values for x in receptor.values] - R_mat0 = [raw_norm[:, R1[r]].X.A.astype(np.float)[:, 0] for r in range(len(R1))] + R_mat0 = [raw_norm[:, R1[r]].X.A.astype(np.float16)[:, 0] for r in range(len(R1))] for i, k in enumerate(receptor.index): if len(receptor.loc[k].dropna()) > 1: if adata.uns['mean'] == 'geometric':