-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
322 lines (262 loc) · 9.8 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from typing import Tuple, Optional
import torch
from torch import nn
from einops.layers.torch import Rearrange
from einops import rearrange
from gluonts.core.component import validated
from gluonts.model import Input, InputSpec
from gluonts.torch.scaler import StdScaler, MeanScaler, NOPScaler
from gluonts.torch.distributions import StudentTOutput
class PreNormResidual(nn.Module):
"""
Pre-Normalization Residual Block. Applies Layer-Normalization over the features and prediction_length dimensions.
:argument
- dim (int): input dimension
- prediction_length (int): prediction length
- fn (function): function to be applied
:return
- x (tensor): output tensor
"""
def __init__(self, dim: int, prediction_length: int, fn):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm([dim, prediction_length])
def forward(self, x):
return self.fn(self.norm(x)) + x
class CtxMap(nn.Module):
"""
Module implementing the mapping from the context-length to the forecast length for TSMixer.
:argument
- context_length (int): context length
- prediction_length (int): prediction length
:return
- x (tensor): output tensor
"""
def __init__(self, context_length: int, prediction_length: int):
super().__init__()
self.context_length = context_length
self.prediction_length = prediction_length
self.fc = nn.Sequential(
Rearrange("b nf h ns -> b nf ns h"),
nn.Linear(self.context_length, self.prediction_length),
Rearrange("b nf ns h -> b nf h ns"),
)
def forward(self, x):
out = self.fc(x)
return out
class MLPTimeBlock(nn.Module):
"""MLP for time embedding.
:argument
- prediction_length (int): prediction length
- dropout (float): dropout rate
:return
- x (tensor): output tensor
"""
def __init__(self, prediction_length: int, dropout: float = 0.1):
super().__init__()
self.time_mlp = nn.Sequential(
nn.Linear(prediction_length, prediction_length),
nn.ReLU(),
nn.Dropout(dropout),
)
def forward(self, x):
out = self.time_mlp(x)
return out
class MLPFeatBlock(nn.Module):
"""MLPs for feature embedding.
:argument
- in_channels (int): input channels
- hidden_size (int): hidden size
- dropout (float): dropout rate, default 0.1
:return
- x (tensor): output tensor
"""
def __init__(self, in_channels: int, hidden_size: int, dropout: float = 0.1):
super().__init__()
self.feat_mlp = nn.Sequential(
Rearrange("b ns nf h -> b ns h nf"),
nn.Linear(in_channels, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, in_channels),
nn.Dropout(dropout),
Rearrange("b ns h nf -> b ns nf h"),
)
def forward(self, x):
out = self.feat_mlp(x)
return out
class MLPFeatMap(nn.Module):
"""MLP on feature domain.
:argument
- in_channels (int): input channels
- hidden_size (int): hidden size
- dropout (float): dropout rate
:return
- x (tensor): output tensor
"""
def __init__(self, in_channels: int, hidden_size: int, dropout: float = 0.1):
super().__init__()
self.fc = nn.Sequential(
Rearrange("b nf h ns -> b h ns nf"),
nn.Linear(in_channels, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
Rearrange("b h ns nf -> b nf h ns"),
)
def forward(self, x):
out = self.fc(x)
return out
class TSMixerModel(nn.Module):
"""
Module implementingTSMixer for forecasting.
Parameters
----------
prediction_length
Number of time points to predict.
context_length
Number of time steps prior to prediction time that the model.
distr_output
Distribution to use to evaluate observations and sample predictions.
Default: ``StudentTOutput()``.
batch_norm
Whether to apply batch normalization. Default: ``False``.
"""
@validated()
def __init__(
self,
prediction_length: int,
context_length: int,
scaling: str,
input_size: int,
depth: int,
dim: int,
expansion_factor: int = 4,
dropout: float = 0.1,
num_feat_dynamic_real: int = 0,
num_feat_static_real: int = 0,
num_feat_static_cat: int = 0,
distr_output=StudentTOutput(),
num_parallel_samples: int = 100,
batch_norm: bool = False,
) -> None:
super().__init__()
assert prediction_length > 0
assert context_length > 0
assert depth > 0
self.distr_output = distr_output
self.prediction_length = prediction_length
self.context_length = context_length
self.input_size = input_size
self.num_feat_static_real = num_feat_static_real
self.num_feat_dynamic_real = num_feat_dynamic_real
self.num_parallel_samples = num_parallel_samples
if scaling == "mean":
self.scaler = MeanScaler(keepdim=True, dim=1)
elif scaling == "std":
self.scaler = StdScaler(keepdim=True, dim=1)
else:
self.scaler = NOPScaler(keepdim=True, dim=1)
self.linear_map = CtxMap(self.context_length, self.prediction_length)
self.mlp_x = MLPFeatMap(self._number_of_features, dim, dropout)
self.mlp_z = MLPFeatMap(self.num_feat_dynamic_real, dim, dropout)
dim_xz = dim * 2 # since x and z are concatenated along the feature dimension
self.mlp_mixer_block = nn.Sequential(
Rearrange("b nf h ns -> b ns nf h"),
*[
nn.Sequential(
PreNormResidual(
dim_xz,
self.prediction_length,
MLPTimeBlock(self.prediction_length, dropout),
),
PreNormResidual(
dim_xz,
self.prediction_length,
MLPFeatBlock(dim_xz, dim_xz * expansion_factor, dropout),
),
)
for _ in range(depth)
],
Rearrange("b ns nf h -> b h ns nf"),
)
self.args_proj = self.distr_output.get_args_proj(dim_xz)
@property
def _number_of_features(self) -> int:
return (
self.num_feat_dynamic_real
+ self.num_feat_static_real
+ 3 # 1 + the log(loc) + log1p(scale)
)
def describe_inputs(self, batch_size=1) -> InputSpec:
return InputSpec(
{
"past_target": Input(
shape=(batch_size, self.context_length, self.input_size),
dtype=torch.float,
),
"past_observed_values": Input(
shape=(batch_size, self.context_length, self.input_size),
dtype=torch.float,
),
},
torch.zeros,
)
def forward(
self,
feat_static_cat: Optional[torch.Tensor] = None,
feat_static_real: Optional[torch.Tensor] = None,
past_time_feat: Optional[torch.Tensor] = None,
past_target: Optional[torch.Tensor] = None,
past_observed_values: Optional[torch.Tensor] = None,
future_time_feat: Optional[torch.Tensor] = None,
future_target: Optional[torch.Tensor] = None,
future_observed_values: Optional[torch.Tensor] = None,
) -> Tuple[Tuple[torch.Tensor, ...], torch.Tensor, torch.Tensor]:
past_target_scaled, loc, scale = self.scaler(past_target, past_observed_values)
past_target_scaled = past_target_scaled.unsqueeze(1) # channel dim
log_abs_loc = loc.abs().log1p().unsqueeze(1).expand_as(past_target_scaled)
log_scale = scale.log().unsqueeze(1).expand_as(past_target_scaled)
past_time_feat = (
past_time_feat.transpose(2, 1)
.unsqueeze(-1)
.repeat_interleave(dim=-1, repeats=self.input_size)
)
# x: historical data of shape (batch_size, Cx, context_length, n_series)
# z: future time-varying features of shape (batch_size, Cz, prediction_length, n_series)
# s: static features of shape (batch_size, Cs, prediction_length, n_series)
# b: batch
# h: fcst_h
# ns: n_series
# nf: n_features
x = torch.cat(
(
past_target_scaled,
log_abs_loc,
log_scale,
past_time_feat,
),
dim=1,
)
future_time_feat_repeat = future_time_feat.unsqueeze(2).repeat_interleave(
dim=2, repeats=self.input_size
)
z = rearrange(future_time_feat_repeat, "b h ns nf -> b nf h ns")
x = self.linear_map(x)
x_prime = self.mlp_x(x)
z_prime = self.mlp_z(z)
y_prime = torch.cat([x_prime, z_prime], dim=1)
nn_out = self.mlp_mixer_block(y_prime) # self.mixer_blocks(y_prime, s)
distr_args = self.args_proj(nn_out)
return distr_args, loc, scale