-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathindrnn.py
490 lines (419 loc) · 18.7 KB
/
indrnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import torch
from torch.nn import Parameter, ParameterList
import torch.nn as nn
import torch.nn.functional as F
import math
def check_bounds(weight, min_abs, max_abs):
if min_abs:
abs_kernel = torch.abs(weight).clamp_(min=min_abs)
weight = torch.mul(torch.sign(weight), abs_kernel)
if max_abs:
weight = weight.clamp(max=max_abs, min=-max_abs)
return weight
class IndRNNCell(nn.Module):
r"""An IndRNN cell with tanh or ReLU non-linearity.
.. math::
h' = \tanh(w_{ih} * x + b_{ih} + w_{hh} (*) h)
With (*) being element-wise vector multiplication.
If nonlinearity='relu', then ReLU is used in place of tanh.
Args:
input_size: The number of expected features in the input x
hidden_size: The number of features in the hidden state h
bias: If ``False``, then the layer does not use bias weights b_ih and b_hh.
Default: ``True``
nonlinearity: The non-linearity to use ['tanh'|'relu']. Default: 'relu'
hidden_min_abs: Minimal absolute inital value for hidden weights. Default: 0
hidden_max_abs: Maximal absolute inital value for hidden weights. Default: None
Inputs: input, hidden
- **input** (batch, input_size): tensor containing input features
- **hidden** (batch, hidden_size): tensor containing the initial hidden
state for each element in the batch.
Outputs: h'
- **h'** (batch, hidden_size): tensor containing the next hidden state
for each element in the batch
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(input_size x hidden_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(hidden_size)`
Examples::
>>> rnn = nn.IndRNNCell(10, 20)
>>> input = Variable(torch.randn(6, 3, 10))
>>> hx = Variable(torch.randn(3, 20))
>>> output = []
>>> for i in range(6):
... hx = rnn(input[i], hx)
... output.append(hx)
"""
__constants__ = [
"hidden_max_abs", "hidden_min_abs", "input_size", "hidden_size",
"nonlinearity", "hidden_init", "recurrent_init",
]
def __init__(self, input_size, hidden_size, bias=True, nonlinearity="relu",
hidden_min_abs=0, hidden_max_abs=None,
hidden_init=None, recurrent_init=None,
gradient_clip=None):
super(IndRNNCell, self).__init__()
self.hidden_max_abs = hidden_max_abs
self.hidden_min_abs = hidden_min_abs
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.nonlinearity = nonlinearity
self.hidden_init = hidden_init
self.recurrent_init = recurrent_init
if self.nonlinearity == "tanh":
self.activation = F.tanh
elif self.nonlinearity == "relu":
self.activation = F.relu
else:
raise RuntimeError(
"Unknown nonlinearity: {}".format(self.nonlinearity))
self.weight_ih = Parameter(torch.Tensor(hidden_size, input_size))
self.weight_hh = Parameter(torch.Tensor(hidden_size))
if bias:
self.bias_ih = Parameter(torch.Tensor(hidden_size))
else:
self.register_parameter('bias_ih', None)
if gradient_clip:
if isinstance(gradient_clip, tuple):
min_g, max_g = gradient_clip
else:
max_g = gradient_clip
min_g = -max_g
self.weight_ih.register_hook(
lambda x: x.clamp(min=min_g, max=max_g))
self.weight_hh.register_hook(
lambda x: x.clamp(min=min_g, max=max_g))
if bias:
self.bias_ih.register_hook(
lambda x: x.clamp(min=min_g, max=max_g))
self.reset_parameters()
def check_bounds(self):
self.weight_hh.data = check_bounds(
self.weight_hh.data, self.hidden_min_abs, self.hidden_max_abs
)
def reset_parameters(self):
for name, weight in self.named_parameters():
if "bias" in name:
weight.data.zero_()
elif "weight_hh" in name:
if self.recurrent_init is None:
nn.init.constant_(weight, 1)
else:
self.recurrent_init(weight)
elif "weight_ih" in name:
if self.hidden_init is None:
nn.init.normal_(weight, 0, 0.01)
else:
self.hidden_init(weight)
else:
weight.data.normal_(0, 0.01)
# weight.data.uniform_(-stdv, stdv)
self.check_bounds()
def forward(self, input, hx):
return self.activation(F.linear(
input, self.weight_ih, self.bias_ih) + torch.mul(self.weight_hh, hx))
class IndRNN(nn.Module):
r"""Applies a multi-layer IndRNN with `tanh` or `ReLU` non-linearity to an
input sequence.
For each element in the input sequence, each layer computes the following
function:
.. math::
h_t = \tanh(w_{ih} x_t + b_{ih} + w_{hh} (*) h_{(t-1)})
where :math:`h_t` is the hidden state at time `t`, and :math:`x_t` is
the hidden state of the previous layer at time `t` or :math:`input_t`
for the first layer. (*) is element-wise multiplication.
If :attr:`nonlinearity`='relu', then `ReLU` is used instead of `tanh`.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers.
nonlinearity: The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
hidden_inits: The init value generator for the hidden unit.
recurrent_inits: The init value generator for the recurrent unit.
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_norm: If ``True``, then batch normalization is applied after each time step
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)`
Inputs: input, h_0
- **input** of shape `(seq_len, batch, input_size)`: tensor containing the features
of the input sequence. The input can also be a packed variable length
sequence. See :func:`torch.nn.utils.rnn.pack_padded_sequence`
or :func:`torch.nn.utils.rnn.pack_sequence`
for details.
- **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
containing the initial hidden state for each element in the batch.
Defaults to zero if not provided.
Outputs: output, h_n
- **output** of shape `(seq_len, batch, hidden_size * num_directions)`: tensor
containing the output features (`h_k`) from the last layer of the RNN,
for each `k`. If a :class:`torch.nn.utils.rnn.PackedSequence` has
been given as the input, the output will also be a packed sequence.
- **h_n** (num_layers * num_directions, batch, hidden_size): tensor
containing the hidden state for `k = seq_len`.
Attributes:
cells[k]: individual IndRNNCells containing the weights
Examples::
>>> rnn = nn.IndRNN(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output = rnn(input, h0)
"""
def __init__(self, input_size, hidden_size, n_layer=1, batch_norm=False,
batch_first=False, bidirectional=False,
hidden_inits=None, recurrent_inits=None,
**kwargs):
super(IndRNN, self).__init__()
self.hidden_size = hidden_size
self.batch_norm = batch_norm
self.n_layer = n_layer
self.batch_first = batch_first
self.bidirectional = bidirectional
self.num_directions = num_directions = 2 if self.bidirectional else 1
if batch_first:
self.time_index = 1
self.batch_index = 0
else:
self.time_index = 0
self.batch_index = 1
cells = []
cells_bi = []
for i in range(n_layer):
if recurrent_inits is not None:
kwargs["recurrent_init"] = recurrent_inits[i]
if hidden_inits is not None:
kwargs["hidden_init"] = hidden_inits[i]
in_size = input_size if i == 0 else hidden_size * num_directions
cells.append(IndRNNCell(in_size, hidden_size, **kwargs))
cells_bi.append(IndRNNCell(in_size, hidden_size, **kwargs))
self.cells = nn.ModuleList(cells)
self.cells_bi = nn.ModuleList(cells_bi)
if batch_norm:
bns = []
for i in range(n_layer):
bns.append(nn.BatchNorm1d(hidden_size * num_directions))
self.bns = nn.ModuleList(bns)
h0 = torch.zeros(hidden_size * num_directions, requires_grad=False)
self.register_buffer('h0', h0)
def forward(self, x, hidden=torch.tensor(float("nan"))):
batch_norm = self.batch_norm
time_index = self.time_index
batch_index = self.batch_index
num_directions = self.num_directions
hiddens = []
i = 0
for cell in self.cells:
hx = self.h0.unsqueeze(0).expand(
x.size(batch_index),
self.hidden_size * num_directions).contiguous()
x_n = []
hx_cell = hx[:, : self.hidden_size * 1]
hx_cell_bi = hx[:, self.hidden_size: self.hidden_size * 2]
cell.weight_hh.data = check_bounds(
cell.weight_hh.data, cell.hidden_min_abs, cell.hidden_max_abs
)
outputs = []
x_T = torch.unbind(x, time_index)
time_frame = len(x_T)
for t in range(time_frame):
hx_cell = cell(x_T[t], hx_cell)
outputs.append(hx_cell)
x_cell = torch.stack(outputs, time_index)
if self.bidirectional:
outputs_bi = []
for t in range(time_frame - 1, -1, -1):
hx_cell_bi = self.cells_bi[i](x_T[t], hx_cell_bi)
outputs_bi.append(hx_cell_bi)
x_cell_bi = torch.stack(outputs_bi[::-1], time_index)
x_cell = torch.cat([x_cell, x_cell_bi], 2)
x_n.append(x_cell)
hiddens.append(hx_cell)
x = torch.cat(x_n, -1)
if batch_norm:
if self.batch_first:
x = self.bns[i](
x.permute(batch_index, 2, time_index).contiguous()).permute(0, 2, 1)
else:
x = self.bns[i](
x.permute(batch_index, 2, time_index).contiguous()).permute(2, 0, 1)
i += 1
return x.squeeze(2), torch.cat(hiddens, -1)
class IndRNNv2(nn.Module):
r"""Applies a multi-layer IndRNN with `tanh` or `ReLU` non-linearity to an
input sequence.
For each element in the input sequence, each layer computes the following
function:
.. math::
h_t = \tanh(w_{ih} x_t + b_{ih} + w_{hh} (*) h_{(t-1)})
where :math:`h_t` is the hidden state at time `t`, and :math:`x_t` is
the hidden state of the previous layer at time `t` or :math:`input_t`
for the first layer. (*) is element-wise multiplication.
If :attr:`nonlinearity`='relu', then `ReLU` is used instead of `tanh`.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers.
nonlinearity: The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
hidden_inits: The init value generator for the hidden unit.
recurrent_inits: The init value generator for the recurrent unit.
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_norm: If ``True``, then batch normalization is applied after each time step
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)`
hidden_min_abs: Minimal absolute inital value for hidden weights. Default: 0
hidden_max_abs: Maximal absolute inital value for hidden weights. Default: None
Inputs: input, h_0
- **input** of shape `(seq_len, batch, input_size)`: tensor containing the features
of the input sequence. The input can also be a packed variable length
sequence. See :func:`torch.nn.utils.rnn.pack_padded_sequence`
or :func:`torch.nn.utils.rnn.pack_sequence`
for details.
- **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
containing the initial hidden state for each element in the batch.
Defaults to zero if not provided.
Outputs: output, h_n
- **output** of shape `(seq_len, batch, hidden_size * num_directions)`: tensor
containing the output features (`h_k`) from the last layer of the RNN,
for each `k`. If a :class:`torch.nn.utils.rnn.PackedSequence` has
been given as the input, the output will also be a packed sequence.
- **h_n** (num_layers * num_directions, batch, hidden_size): tensor
containing the hidden state for `k = seq_len`.
Attributes:
cells[k]: individual IndRNNCells containing the weights
Examples::
>>> rnn = nn.IndRNN(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output = rnn(input, h0)
"""
def __init__(self, input_size, hidden_size, n_layer=1, batch_norm=False,
batch_first=False, bidirectional=False, bias=True,
hidden_inits=None, recurrent_inits=None,
nonlinearity="relu", hidden_min_abs=0, hidden_max_abs=None,
gradient_clip=None):
super(IndRNNv2, self).__init__()
self.hidden_size = hidden_size
self.batch_norm = batch_norm
self.n_layer = n_layer
self.batch_first = batch_first
self.bidirectional = bidirectional
self.nonlinearity = nonlinearity
self.hidden_min_abs = hidden_min_abs
self.hidden_max_abs = hidden_max_abs
self.gradient_clip = gradient_clip
if gradient_clip:
if isinstance(gradient_clip, tuple):
min_g, max_g = gradient_clip
else:
max_g = gradient_clip
min_g = -max_g
if self.nonlinearity == "tanh":
self.activation = F.tanh
elif self.nonlinearity == "relu":
self.activation = F.relu
else:
raise RuntimeError(
"Unknown nonlinearity: {}".format(self.nonlinearity))
self.num_directions = num_directions = 2 if self.bidirectional else 1
if batch_first:
self.time_index = 1
self.batch_index = 0
else:
self.time_index = 0
self.batch_index = 1
self.cells_recurrent = ParameterList(
[Parameter(torch.Tensor(num_directions * hidden_size)) for i in range(n_layer)]
)
if gradient_clip:
for param in self.cells_recurrent:
param.register_hook(
lambda x: x.clamp(min=min_g, max=max_g)
)
cells_hidden = []
for i in range(n_layer):
directions_hidden = []
in_size = input_size * num_directions if i == 0 else hidden_size * num_directions**2
hidden = nn.Conv1d(
in_size, hidden_size * num_directions, 1, groups=num_directions
)
if hidden_inits is not None:
hidden_inits[i](hidden.weight)
else:
torch.nn.init.normal_(hidden.weight, 0, 0.01)
if bias:
torch.nn.init.constant_(hidden.bias, 0)
if gradient_clip:
hidden.bias.register_hook(
lambda x: x.clamp(min=min_g, max=max_g)
)
if recurrent_inits is not None:
recurrent_inits[i](self.cells_recurrent[i])
else:
torch.nn.init.constant_(self.cells_recurrent[i], 1)
hidden.weight.data = check_bounds(
hidden.weight.data, self.hidden_min_abs, self.hidden_max_abs
)
if gradient_clip:
hidden.weight.register_hook(
lambda x: x.clamp(min=min_g, max=max_g)
)
cells_hidden.append(hidden)
self.cells_hidden = nn.ModuleList(cells_hidden)
if batch_norm:
bns = []
for i in range(n_layer):
bns.append(nn.BatchNorm1d(hidden_size * num_directions))
self.bns = nn.ModuleList(bns)
h0 = torch.zeros(hidden_size * num_directions, requires_grad=False)
self.register_buffer('h0', h0)
def forward(self, x, hidden=None):
batch_norm = self.batch_norm
time_index = self.time_index
batch_index = self.batch_index
num_directions = self.num_directions
frame_size = x.size(self.time_index)
batch_size = x.size(self.batch_index)
x = x.permute(self.batch_index, -1, self.time_index)
hiddens = []
i = 0
for cell_hidden in self.cells_hidden:
cell_hidden.weight.data = check_bounds(
cell_hidden.weight.data,
self.hidden_min_abs, self.hidden_max_abs
)
if hidden is None:
hx = self.h0.unsqueeze(0).expand(
batch_size,
self.hidden_size * num_directions).contiguous()
else:
hx = hidden[i]
outputs = []
if self.bidirectional:
x_T = torch.cat([x, x.flip(-1)], 1)
else:
x_T = x
lin = cell_hidden(x_T)
lin = torch.unbind(lin, 2)
recurrent_h = self.cells_recurrent[i]
for t in range(frame_size):
hx = self.activation(lin[t] +
torch.mul(recurrent_h, hx))
outputs.append(hx)
x = torch.stack(outputs, 2)
hiddens.append(hx)
if batch_norm:
if self.batch_first:
x = self.bns[i](x)
else:
x = self.bns[i](x)
i += 1
hiddens = torch.cat(hiddens, -1)
if self.batch_first:
x = x.permute(0, 2, 1)
else:
x = x.permute(2, 0, 1)
return x.squeeze(2), hiddens