forked from vgsatorras/egnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ae.py
209 lines (181 loc) · 10.7 KB
/
main_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import argparse
import torch
import torch.utils.data
from torch import nn, optim
import utils
from ae_datasets import d_selector, Dataloader
import models
import losess
import eval
parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--exp_name', type=str, default='exp_1', metavar='N',
help='experiment_name')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--dataset', type=str, default='community_ours', metavar='N',
help='community_ours | community_overfit | erdosrenyinodes_0.25_none | erdosrenyinodes_0.25_overfit')
parser.add_argument('--no-cuda', action='store_true', default=True,
help='we did not use cuda in this experiment')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--test_interval', type=int, default=2, metavar='N',
help='how many epochs to wait before logging test')
parser.add_argument('--generate-interval', type=int, default=100, metavar='N',
help='how many epochs to wait before logging test')
parser.add_argument('--outf', type=str, default='outputs_ae', metavar='N',
help='folder to output vae')
parser.add_argument('--plots', type=int, default=0, metavar='N',
help='Plot images of the graphs & adjacency matrices')
parser.add_argument('--lr', type=float, default=1e-4, metavar='N',
help='learning rate')
parser.add_argument('--nf', type=int, default=64, metavar='N',
help='learning rate')
parser.add_argument('--emb_nf', type=int, default=8, metavar='N',
help='learning rate')
parser.add_argument('--K', type=int, default=8, metavar='N',
help='learning rate')
parser.add_argument('--model', type=str, default='ae_egnn', metavar='N',
help='available models: ae | ae_rf | ae_egnn | baseline')
parser.add_argument('--attention', type=int, default=0, metavar='N',
help='attention in the ae model')
parser.add_argument('--noise_dim', type=int, default=0, metavar='N',
help='break the symmetry applying noise at the input of the AE')
parser.add_argument('--n_layers', type=int, default=4, metavar='N',
help='number of layers for the autoencoder')
parser.add_argument('--reg', type=float, default=1e-3, metavar='N',
help='regularizer for the equivariant autoencoder')
parser.add_argument('--clamp', type=int, default=1, metavar='N',
help='clamp the output of the coords function if get too large (safe mechanism, it is not activated in practice)')
parser.add_argument('--weight_decay', type=float, default=1e-16, metavar='N',
help='clamp the output of the coords function if get too large')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
print(args)
torch.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
utils.create_folders(args)
#
dataset = d_selector.retrieve_dataset(args.dataset, partition="train", directed=True)
train_loader = Dataloader(dataset, batch_size=1)
dataset = d_selector.retrieve_dataset(args.dataset, partition="val", directed=True)
val_loader = Dataloader(dataset, batch_size=1, shuffle=False)
dataset = d_selector.retrieve_dataset(args.dataset, partition="test", directed=True)
test_loader = Dataloader(dataset, batch_size=1, shuffle=False)
if args.model == 'ae':
model = models.AE(hidden_nf=args.nf, embedding_nf=args.emb_nf, noise_dim=args.noise_dim, act_fn=nn.SiLU(),
learnable_dec=1, device=device, attention=args.attention, n_layers=args.n_layers)
elif args.model == 'ae_rf':
model = models.AE_rf(embedding_nf=args.K, nf=args.nf, device=device, n_layers=args.n_layers, reg=args.reg,
act_fn=nn.SiLU(), clamp=args.clamp)
elif args.model == 'ae_egnn':
model = models.AE_EGNN(hidden_nf=args.nf, K=args.K, act_fn=nn.SiLU(), device=device, n_layers=args.n_layers,
reg=args.reg, clamp=args.clamp)
elif args.model == 'baseline':
model = models.Baseline(device=device)
else:
raise Exception('Wrong model %s' % args.model)
print(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
pr = eval.ProgressReporter(path=args.outf + '/' + args.exp_name, file_name='/output.json')
def train(epoch, loader):
lr_scheduler.step(epoch)
model.train()
res = {'epoch': epoch, 'loss': 0, 'bce': 0, 'kl': 0, 'kl_coords': 0, 'adj_err': 0, 'coord_reg': 0, 'counter': 0, 'wrong_edges': 0, 'gt_edges': 0, 'possible_edges': 0}
magnitudes = {'value':0, 'counter':0}
for batch_idx, data in enumerate(loader):
graph = data[0]
nodes, edges, edge_attr, adj_gt = graph.get_dense_graph(store=True, loops=False)
nodes, edges, edge_attr, adj_gt = nodes.to(device), [edges[0].to(device), edges[1].to(device)], edge_attr.to(device), adj_gt.to(device).detach()
n_nodes = nodes.size(0)
optimizer.zero_grad()
adj_pred, z = model(nodes, edges, edge_attr)
bce, kl = losess.vae_loss(adj_pred, adj_gt, None, None)
kl_coords = torch.zeros(1)
loss = bce
loss = loss # normalize loss by the number of nodes
loss.backward()
optimizer.step()
res['loss'] += loss.item()
res['bce'] += bce.item()
res['kl'] += kl.item()
res['kl_coords'] += kl_coords.item()
wrong_edges, adj_err = eval.adjacency_error(adj_pred, adj_gt)
res['adj_err'] += adj_err
res['counter'] += 1
res['wrong_edges'] += wrong_edges
res['gt_edges'] += torch.sum(adj_gt).item()
res['possible_edges'] += n_nodes ** 2 - n_nodes
if batch_idx % args.log_interval == 0:
print('===> Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
magnitudes['value'] += torch.mean(torch.abs(z))
magnitudes['counter'] += 1
error = res['wrong_edges'] / res['possible_edges']
print('Train avg bce: %.4f \t KL %.4f \t KL_coords %.4f \tAdj_err %.4f \nWrong edges %d \t gt edges %d \t Possible edges %d \t Error %.4f' % (res['bce'] / res['counter'], res['kl'] / res['counter'], res['kl_coords'] / res['counter'], res['adj_err'] / res['counter'], res['wrong_edges'], res['gt_edges'], res['possible_edges'], error))
def test(epoch, loader):
model.eval()
res = {'epoch': epoch, 'loss': 0, 'bce': 0, 'kl': 0, 'kl_coords': 0, 'adj_err': 0, 'counter': 0, 'wrong_edges': 0, 'gt_edges': 0, 'possible_edges': 0, 'tp': 0, 'fp': 0, 'fn': 0}
with torch.no_grad():
for idx, data in enumerate(loader):
graph = data[0]
n_nodes = graph.get_num_nodes()
nodes, edges, edge_attr, adj_gt = graph.get_dense_graph(store=True, loops=False)
nodes, edges, edge_attr, adj_gt = nodes.to(device), [edges[0].to(device), edges[1].to(device)], edge_attr.to(device), adj_gt.to(device)
adj_pred, mu = model(nodes, edges, edge_attr)
bce, kl = losess.vae_loss(adj_pred, adj_gt, None, None)
loss = bce
res['loss'] += loss.item()
res['bce'] += bce.item()
res['kl'] += kl.item()
tp, fp, fn = eval.tp_fp_fn(adj_pred, adj_gt)
res['tp'] += tp
res['fp'] += fp
res['fn'] += fn
wrong_edges, adj_err = eval.adjacency_error(adj_pred, adj_gt)
res['adj_err'] += adj_err
res['counter'] += 1
res['wrong_edges'] += wrong_edges
res['gt_edges'] += torch.sum(adj_gt).item()
res['possible_edges'] += n_nodes ** 2 - n_nodes
res = utils.normalize_res(res, keys=['loss', 'bce', 'kl', 'kl_coords', 'adj_err'])
error = res['wrong_edges']/ res['possible_edges']
f1_score = 1.0*res['tp'] / (res['tp'] + 0.5*(res['fp'] + res['fn']))
print('Test on %s \t \t \t \t loss: %.4f \t bce: %.4f \t kl: %.4f \t kl_coords: %.4f \t Adj_err %.4f \nWrong edges %d \t gt edges %d \t Possible edges %d \t Error %.4f \t TP: %d \t FP: %d \t FN: %d \t F1-score: %.4f' % (loader.dataset.partition,
res['loss'],
res['bce'],
res['kl'],
res['kl_coords'],
res['adj_err'],
res['wrong_edges'],
res['gt_edges'],
res['possible_edges'],
error, res['tp'], res['fp'], res['fn'], f1_score))
pr.add_epoch(res, loader.dataset.partition)
return res
if __name__ == "__main__":
best_bce_val = 1e8
best_res_test = None
best_epoch = 0
for epoch in range(0, args.epochs):
train(epoch, train_loader)
if epoch % args.test_interval == 0:
res_train = test(epoch, train_loader)
res_val = test(epoch, val_loader)
res_test = test(epoch, test_loader)
if res_val['bce'] < best_bce_val:
best_bce_val = res_val['bce']
best_res_test = res_test
best_epoch = epoch
print("###############\n### Best result is: bce: %.4f, wrong_edges %d, error: %.4f, epoch %d" % (best_res_test['bce'],
best_res_test['wrong_edges'],
best_res_test['wrong_edges']/best_res_test['possible_edges'],
best_epoch))
print("###############")