-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
159 lines (117 loc) · 4.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from scrapper import Google
import asyncio
from flask import Flask, render_template, request, redirect, url_for, flash
import os
from werkzeug.utils import secure_filename
from keras import backend as K
from keras.models import load_model
from keras.preprocessing import image
from keras import optimizers
import numpy as np
import cv2
from fetus_deletus import static_clear
import matplotlib.pyplot as plt
from chunk import d
import random
# predicting images
OUT_OF_SCOPE = False
cap = random.randint(0, 10)
def graph(classes, dict, name):
top_indices = np.argsort(classes[0])[-3:]
top_values = classes[0][top_indices][-3:]
# """UNKNOWN SAMPLE CODE"""
# print(int(str(clss[np.argmax(clss)]).split("e")))
# print(str(top_values[2]).split("e"))
# tlist = top_values.tolist()
# print(tlist)
# if int(str(tlist[2]).split("e")[1]) <= -3:
# OUT_OF_SCOPE = True
print(top_indices)
print(top_values)
x = np.arange(len(top_indices))
y = top_values
plt.bar(x, top_values, width=0.6, alpha=0.5)
plt.xlabel('Disease')
plt.xticks(x, [dict[str(i)][1]
for i in top_indices], fontsize=10)
plt.title('Probability')
# plt.show()
print(cap)
plt.savefig(f"static/chart_{name}.png")
def classes(filename):
# dimensions of our images
img_width, img_height = 256, 256
# load the model we saved
model = load_model('model_1D.h5')
model.load_weights("modelw_1D.h5")
sgd = optimizers.SGD(lr=0.25, momentum=0.6, decay=0.0, nesterov=False)
model.compile(loss='mean_squared_error',
optimizer=sgd,
metrics=['accuracy'])
img = cv2.imread(f"static/{filename}")
img = cv2.resize(img, (img_width, img_height))
x = image.img_to_array(img)
# """NOISE"""
# b,g,r = cv2.split(img) # get b,g,r
# rgb_img = cv2.merge([r,g,b]) # switch it to rgb
# dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21)
# b,g,r = cv2.split(dst) # get b,g,r
# rgb_dst = cv2.merge([r,g,b])
# x = image.img_to_array(dst)w
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
clss = model.predict(images, batch_size=10)
# print the classes, the images belong to
disease_dict = d
graph(clss, disease_dict, filename)
K.clear_session()
return disease_dict[str(classes[0])]
UPLOAD_FOLDER = "static"
ALLOWED_EXTENSIONS = set(['jpg', 'jpeg', 'JPG', 'JPEG'])
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
@app.route('/')
def hello_world():
static_clear()
return render_template("index.html")
@app.route('/', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
try:
file = request.files['file']
print(file)
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
return redirect(url_for('diagnosed', filename=filename))
else:
return render_template("404.html")
except Exception:
return render_template("404.html")
@app.route('/diagnosed/<filename>')
def diagnosed(filename):
disease = classes(filename)
if not OUT_OF_SCOPE:
try:
medication = Google().g(disease[0] + " medication")
except Exception:
medication = ["Google Failed to", " response", "."]
# print(medication)
if disease[1]:
common = disease[1]
else:
common = None
try:
med = disease[2]
except Exception:
med = None
else:
disease = "Unknown"
medication = "Provided sample is out of the trained dataset scope."
return render_template("diagnosed.html", name=disease[0], filename=filename, list=medication, common=common, para=med, cap=filename)
if __name__ == '__main__':
app.run(debug=True)