-
-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathrun.py
94 lines (81 loc) · 2.86 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from ultralytics import YOLO
import torch
from logic.config_watcher import cfg
from logic.capture import capture
from logic.visual import visuals
from logic.frame_parser import frameParser
from logic.hotkeys_watcher import hotkeys_watcher
from logic.checks import run_checks
import supervision as sv # Import this for ByteTrack
@torch.inference_mode()
def perform_detection(model, image):
if cfg.disable_tracker == False:
# Initialize ByteTrack
byte_tracker = sv.ByteTrack()
results = model.predict(
source=image,
cfg="logic/tracker.yaml",
imgsz=cfg.ai_model_image_size,
stream=True,
conf=cfg.AI_conf,
iou=0.5,
device=cfg.AI_device,
half=False if "cpu" in cfg.AI_device else True,
max_det=20,
agnostic_nms=False,
augment=False,
vid_stride=False,
visualize=False,
verbose=False,
show_boxes=False,
show_labels=False,
show_conf=False,
save=False,
show=False)
for result in results:
# Convert each result to detections
detections = sv.Detections.from_ultralytics(result)
tracked_detections = byte_tracker.update_with_detections(detections)
return tracked_detections # Assuming you want to return the first frame's detection for simplicity
else:
# If not using tracker, return the first result from the generator
result = next(model.predict(
source=image,
cfg="logic/game.yaml",
imgsz=cfg.ai_model_image_size,
stream=True,
conf=cfg.AI_conf,
iou=0.5,
device=cfg.AI_device,
half=False if "cpu" in cfg.AI_device else True,
max_det=20,
agnostic_nms=False,
augment=False,
vid_stride=False,
visualize=False,
verbose=False,
show_boxes=False,
show_labels=False,
show_conf=False,
save=False,
show=False))
return result
def init():
run_checks()
try:
model = YOLO(f"models/{cfg.AI_model_name}", task="detect")
except Exception as e:
print("An error occurred when loading the AI model:\n", e)
quit(0)
while True:
image = capture.get_new_frame()
if image is not None:
if cfg.circle_capture:
image = capture.convert_to_circle(image)
if cfg.show_window or cfg.show_overlay:
visuals.queue.put(image)
result = perform_detection(model, image)
if hotkeys_watcher.app_pause == 0:
frameParser.parse(result)
if __name__ == "__main__":
init()