forked from mila-iqia/Conscious-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_mp.py
427 lines (409 loc) · 23.9 KB
/
utils_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
COMPONENTS FOR EXPERIMENTS W/ MULTI-PROCESSING
"""
import time, gym, datetime, numpy as np
from DQN_CP import get_DQN_CP_BASE_agent, get_DQN_CP_agent
from DQN_NOSET import get_DQN_NOSET_BASE_agent, get_DQN_NOSET_agent
from DQN_WM import get_DQN_WM_BASE_agent, get_DQN_WM_agent
from DQN_Dyna import get_DQN_Dyna_BASE_agent, get_DQN_Dyna_agent
from utils import *
from runtime import FrameStack, get_cpprb_env_dict
from multiprocessing import Process, Value, Event
from multiprocessing.managers import SyncManager
from cpprb import ReplayBuffer, MPReplayBuffer, MPPrioritizedReplayBuffer
from utils import *
import os, psutil, copy
from tensorboardX import SummaryWriter
try:
from gym.envs.registration import register as gym_register
gym_register(id="RandDistShift-v1", entry_point="RandDistShift:RandDistShift", reward_threshold=0.95)
gym_register(id="RandDistShift-v2", entry_point="RandDistShift2:RandDistShift2", reward_threshold=0.95)
gym_register(id="RandDistShift-v3", entry_point="RandDistShift3:RandDistShift3", reward_threshold=0.95)
gym_register(id="KeyRandDistShift-v3", entry_point="KeyRandDistShift:KeyRandDistShift", reward_threshold=0.95)
except:
pass
def get_space_size(space):
if isinstance(space, gym.spaces.box.Box):
return space.shape
elif isinstance(space, gym.spaces.discrete.Discrete):
return [1, ] # space.n
else:
raise NotImplementedError("Assuming to use Box or Discrete, not {}".format(type(space)))
def get_default_rb_dict(size, env):
return {"size": size, "default_dtype": np.float32,
"env_dict": {
"obs": {"shape": get_space_size(env.observation_space)},
"next_obs": {"shape": get_space_size(env.observation_space)},
"act": {"shape": get_space_size(env.action_space)},
"rew": {},
"done": {}}}
def get_env_procgen(args):
env = gym.make('procgen:procgen-%s-v0' % (args.game.lower(),), use_backgrounds=False, restrict_themes=True)
if args.method in ['DQN_CP' or 'DQN_UP'] and args.step_plan_max: assert not env.spec.nondeterministic # does not support stochastic envs
if args.framestack: env = FrameStack(env, 4, gpu=args.gpu_buffer)
return env
def get_env_minigrid_train(args, lava_density_range=[0.3, 0.4], min_num_route=1, transposed=False):
config = {'width': args.size_world, 'height': args.size_world, 'lava_density_range': lava_density_range, 'min_num_route': min_num_route, 'transposed': transposed, 'random_color': args.color_distraction}
if 'key' in args.game.lower():
env = gym.make('KeyRandDistShift-%s' % args.version_game, **config)
else:
env = gym.make('RandDistShift-%s' % args.version_game, **config)
if args.framestack: env = FrameStack(env, args.framestack)
return env
def get_env_minigrid_test(args, lava_density_range=[0.3, 0.4], min_num_route=1, transposed=True):
config = {'width': args.size_world, 'height': args.size_world, 'lava_density_range': lava_density_range, 'min_num_route': min_num_route, 'transposed': transposed, 'random_color': args.color_distraction}
if 'key' in args.game.lower():
env = gym.make('KeyRandDistShift-%s' % args.version_game, **config)
else:
env = gym.make('RandDistShift-%s' % args.version_game, **config)
if args.framestack: env = FrameStack(env, args.framestack)
return env
def get_env_atari(args):
raise NotImplementedError # TODO: to be implemented
def get_agent(env, args, writer, global_rb=None):
if global_rb is not None:
if args.method in ['DQN_CP', 'DQN_UP']:
agent = get_DQN_CP_agent(env, args, replay_buffer=global_rb, writer=writer)
elif args.method == 'DQN_WM':
agent = get_DQN_WM_agent(env, args, replay_buffer=global_rb, writer=writer)
elif args.method == 'DQN_NOSET':
agent = get_DQN_NOSET_agent(env, args, replay_buffer=global_rb, writer=writer)
elif args.method == 'DQN_Dyna':
agent = get_DQN_Dyna_agent(env, args, replay_buffer=global_rb, writer=writer)
else:
raise NotImplementedError
else:
if args.method in ['DQN_CP', 'DQN_UP']:
agent = get_DQN_CP_BASE_agent(env, args, writer)
elif args.method == 'DQN_WM':
agent = get_DQN_WM_BASE_agent(env, args, writer)
elif args.method == 'DQN_NOSET':
agent = get_DQN_NOSET_BASE_agent(env, args, writer)
elif args.method == 'DQN_Dyna':
agent = get_DQN_Dyna_BASE_agent(env, args, writer=writer)
else:
raise NotImplementedError
return agent
def prepare_experiment(env, args):
SyncManager.register('SummaryWriter', SummaryWriter)
manager = SyncManager()
manager.start()
kwargs = get_default_rb_dict(args.size_buffer, env)
kwargs["check_for_update"] = True
kwargs['env_dict'] = get_cpprb_env_dict(env)
kwargs['env_dict']['next_obs'] = kwargs['env_dict']['obs'] # no memory compression for MP else huge problems
if args.prioritized_replay:
global_rb = MPPrioritizedReplayBuffer(**kwargs)
else:
global_rb = MPReplayBuffer(**kwargs)
kwargs_local = copy.deepcopy(kwargs)
kwargs_local['size'] = 128
# queues to share network parameters between a learner and explorers
n_queue = args.num_explorers + 1 # for evaluation
queues = [manager.Queue() for _ in range(n_queue)]
queue_envs_train, queue_envs_eval = manager.Queue(maxsize=32), manager.Queue(maxsize=32)
# Event object to share training status. if event is set True, all exolorers stop sampling transitions
event_terminate = Event()
# Shared memory objects to count number of samples and applied gradients
steps_interact, episodes_interact = Value('i', 0), Value('i', 0) # dtype and initial values
signal_explore = Value('b', False)
if 'distshift' in args.game.lower():
glboal_writer = manager.SummaryWriter("%s-%s/%s/%s/%d" % (args.game, args.version_game, args.method, args.comments, args.seed))
else:
glboal_writer = manager.SummaryWriter("%s/%s/%s/%d" % (args.game, args.method, args.comments, args.seed))
return global_rb, kwargs_local, queues, queue_envs_train, queue_envs_eval, event_terminate, steps_interact, episodes_interact, signal_explore, glboal_writer
def import_tf():
import tensorflow as tf
if tf.config.experimental.list_physical_devices('GPU'):
for cur_device in tf.config.experimental.list_physical_devices("GPU"):
tf.config.experimental.set_memory_growth(cur_device, enable=True)
return tf
def evaluate_agent_mp(func_env, agent, num_episodes=10, type_env='minigrid', suffix='', disable_planning=False, step_record=None, queue_envs=None, heuristic='best_first', record_ts=True):
if step_record is None: step_record = agent.steps_interact
return_episode, returns = 0, []
for _ in range(num_episodes):
if queue_envs is not None:
try:
env = queue_envs.get_nowait()
except:
env = func_env()
else:
env = func_env()
obs_curr, done, flag_reset = env.reset(), False, False
steps_episode, return_episode = 0, 0
while not flag_reset:
action = agent.decide(obs_curr, eval=True, disable_planning=disable_planning, env=env if type_env == 'minigrid' else None, suffix_record=suffix, heuristic=heuristic, record_ts=record_ts)
obs_next, reward, done, info = env.step(action) # take a computed action
steps_episode += 1
return_episode += reward
obs_curr = obs_next
agent.steps_interact += 1
if type_env == 'procgen':
flag_reset = done and steps_episode != env.spec.max_episode_steps and reward == 0 and not info['prev_level_complete']
elif type_env == 'atari':
flag_reset = env.was_real_done
else:
flag_reset = done
returns.append(np.copy(return_episode))
return_eval_avg, return_eval_std = np.mean(returns), np.std(returns)
print('EVALx%d @ step %d - return_eval_avg: %.2f, return_eval_std: %.2f' % (num_episodes, step_record, return_eval_avg, return_eval_std))
agent.record_scalar('Performance/eval' + suffix, return_eval_avg, step_record)
def generator_env(queue_envs_train, queue_envs_eval, func_env_train, func_env_eval, event_terminate, args):
while not event_terminate.is_set():
flag_q_train_full, flag_q_eval_full = queue_envs_train.full(), queue_envs_eval.full()
if flag_q_train_full and flag_q_eval_full:
time.sleep(0.0001)
else:
if not flag_q_train_full:
env_train = func_env_train(args)
queue_envs_train.put_nowait(env_train)
if not flag_q_eval_full:
env_eval = func_env_eval(args)
queue_envs_eval.put_nowait(env_eval)
def explorer(global_rb, kwargs_local, queue, queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, func_env, writer):
if args.gpu_explorer:
tf = import_tf()
else:
import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')
local_rb = ReplayBuffer(**kwargs_local)
env = func_env(args)
agent = get_agent(env, args, writer)
agent.initialize(env.reset(), env.action_space.sample())
size_submit = 32
if 'procgen' in args.type_extractor.lower():
type_env = 'procgen'
elif 'minigrid' in args.game.lower() or 'distshift' in args.game.lower():
type_env = 'minigrid'
elif 'atari' in args.game.lower():
type_env = 'atari'
else:
raise NotImplementedError
flag_newenvs = 'distshift' in args.game.lower()
if args.env_pipeline:
print('[EXPLORER] env generation pipeline enabled')
else:
print('[EXPLORER] env generation pipeline disabled')
while not event_terminate.is_set():
return_cum, steps_episode = 0, 0 # return_cum, return_cum_clipped, steps_episode = 0, 0, 0
obs_curr, done, real_done, flag_reset = env.reset(), False, False, False
if local_rb.get_stored_size() > 0: local_rb.on_episode_end()
while not flag_reset:
if not queue.empty():
dict_shared = None
while not queue.empty():
del dict_shared
dict_shared = queue.get_nowait()
agent.weights_copyfrom(dict_shared)
del dict_shared
steps_interact_curr, episodes_interact_curr = steps_interact.value, episodes_interact.value
agent.steps_interact = steps_interact.value
action = agent.decide(obs_curr, eval=False, env=env if type_env == 'minigrid' else None, record_ts=writer is not None)
obs_next, reward, done, info = env.step(action) # take a computed action
steps_episode += 1
if type_env == 'procgen':
real_done = done and steps_episode != env.spec.max_episode_steps and reward == 0 and not info['prev_level_complete']
elif type_env == 'minigrid':
real_done = done and steps_episode != env.unwrapped.max_steps
else:
real_done = done
agent.step(obs_curr, action, reward, obs_next, real_done, update=False)
local_rb.add(obs=obs_curr, act=action, rew=reward, done=real_done, next_obs=obs_next)
return_cum += reward
obs_curr = obs_next
flag_reset = real_done or (done and type_env == 'minigrid')
if local_rb.get_stored_size() >= size_submit:
if flag_reset: local_rb.on_episode_end()
size_local_rb = local_rb.get_stored_size()
samples_local = local_rb.get_all_transitions()
local_rb.clear()
if args.prioritized_replay:
global_rb.add(**samples_local, priorities=agent.calculate_priorities(samples_local))
else:
global_rb.add(**samples_local)
with steps_interact.get_lock(): steps_interact.value += size_local_rb
agent.steps_interact = steps_interact.value
while not signal_explore.value and not event_terminate.is_set(): time.sleep(0.0001)
if writer is not None:
writer.add_scalar('Performance/train', return_cum, steps_interact_curr)
writer.add_scalar('Other/episodes', episodes_interact_curr, steps_interact_curr)
with episodes_interact.get_lock(): episodes_interact.value += 1
if flag_newenvs:
del env
try:
env = queue_envs_train.get_nowait()
except:
env = func_env(args)
def init_learner_agent(agent, global_rb, func_env, args):
while global_rb.get_stored_size() < args.size_batch:
env = func_env(args)
obs_curr, done = env.reset(), False
step_episode = 0
if global_rb.get_stored_size() > 0: global_rb.on_episode_end()
while not done and global_rb.get_stored_size() < args.size_batch:
action = env.action_space.sample()
obs_next, reward, done, info = env.step(action) # take a computed action
step_episode += 1
if 'procgen' in args.game.lower():
real_done = done and step_episode != env.spec.max_episode_steps and reward == 0 and not info['prev_level_complete']
elif 'minigrid' in args.game.lower() or 'distshift' in args.game.lower():
real_done = done and step_episode != env.unwrapped.max_steps
else:
real_done = done
global_rb.add(obs=obs_curr, act=action, rew=reward, done=real_done, next_obs=obs_next)
agent.initialize()
global_rb.clear()
return agent
def learner(global_rb, queues, steps_interact, episodes_interact, event_terminate, signal_explore, args, pid_main, func_env, writer):
tf = import_tf()
writer.add_scalar('Zzz/zzz', 0, 0)
process_main = psutil.Process(pid_main)
process_learner = psutil.Process(os.getpid())
env = func_env(args)
agent = get_agent(env, args, writer, global_rb=global_rb)
agent = init_learner_agent(agent, global_rb, func_env, args)
step_last_sync, episode_last_eval, time_last_disp = 0, 0, time.time()
print('[LEARNER] loop enter')
agent.steps_interact = steps_interact.value
freq_sync = 32
flag_updated_since_sync = False
batch_preload = None
steps_processed_last_disp, episode_last_disp, time_last_disp = 0, 0, time.time()
while not event_terminate.is_set():
flag_need_update = agent.need_update()
if flag_need_update:
with signal_explore.get_lock(): signal_explore.value = False
episodes_interact_curr = episodes_interact.value
flag_eval = (episodes_interact_curr - episode_last_eval) >= args.freq_eval
agent.steps_interact = steps_interact.value
flag_sync = (agent.steps_interact - step_last_sync) >= freq_sync and agent.steps_interact >= agent.time_learning_starts
if flag_need_update:
agent.step_update(batch=batch_preload)
batch_preload = None
flag_updated_since_sync = True
if episodes_interact_curr - episode_last_disp > 0:
mem = process_main.memory_info().rss
mem_learner = 0
for process_child in process_main.children(recursive=True):
if process_child.pid == process_learner.pid:
mem_learner = process_child.memory_info().rss
mem += process_child.memory_info().rss
mem, mem_learner = mem / 1073741824, mem_learner / 1073741824
time_from_last_disp = time.time() - time_last_disp
if time_from_last_disp > 0:
sps = (agent.steps_processed - steps_processed_last_disp) / time_from_last_disp
if sps > 0:
eta = str(datetime.timedelta(seconds=int((args.steps_stop - agent.steps_processed) / sps)))
writer.add_scalar('Other/sps', sps, agent.steps_interact)
try:
print('[LEARNER] episode_explored: %d, step_explored: %d, steps_processed: %d, size_buffer: %d, epsilon: %.2f, mem: %.2f(%.2f)GiB, sps: %.2f, eta: %s' % (episodes_interact_curr, steps_interact.value, agent.steps_processed, global_rb.get_stored_size(), agent.epsilon.value(agent.steps_interact), mem, mem_learner, sps, eta))
except:
pass
else:
try:
print('[LEARNER] episode_explored: %d, step_explored: %d, steps_processed: %d, size_buffer: %d, epsilon: %.2f, mem: %.2f(%.2f)GiB, sps: 0.00, eta: ---' % (episodes_interact_curr, steps_interact.value, agent.steps_processed, global_rb.get_stored_size(), agent.epsilon.value(agent.steps_interact), mem, mem_learner))
except:
pass
else:
try:
print('[LEARNER] episode_explored: %d, step_explored: %d, steps_processed: %d, size_buffer: %d, epsilon: %.2f, mem: %.2fGiB, sps: inft, eta: 0s' % (episodes_interact_curr, steps_interact.value, agent.steps_processed, global_rb.get_stored_size(), agent.epsilon.value(agent.steps_interact), mem, mem_learner))
except:
pass
if np.random.rand() < 0.01: writer.add_scalar('Other/RAM', mem, agent.steps_processed)
steps_processed_last_disp, episode_last_disp, time_last_disp = agent.steps_processed, episodes_interact_curr, time.time()
dict_shared = None
else:
with signal_explore.get_lock(): signal_explore.value = True
writer.flush()
if batch_preload is None and global_rb.get_stored_size() >= agent.size_batch:
batch_preload = agent.sample_batch()
if (flag_sync and not flag_need_update and flag_updated_since_sync) or flag_eval:
if args.method != 'DQN_Dyna' and agent.ignore_model:
dict_shared = {'network_policy_src': agent.network_policy.get_weights(), 'embed_pos_src': tf.keras.backend.get_value(agent.embed_pos), 'model_src': None, 'steps_processed': agent.steps_processed}
else:
dict_shared = {'network_policy_src': agent.network_policy.get_weights(), 'embed_pos_src': tf.keras.backend.get_value(agent.embed_pos), 'model_src': agent.model.get_weights(), 'steps_processed': agent.steps_processed}
if flag_sync and not flag_need_update and flag_updated_since_sync:
# print('[LEARNER] parameters broadcast to explorers')
for i in range(len(queues) - 1):
try:
queues[i].put_nowait(dict_shared) # put it in every explorer except the evaluator
except:
print('queue.put_nowait exception')
step_last_sync += freq_sync
flag_updated_since_sync = False
if flag_eval:
# print('[LEARNER] parameters broadcast to evaluator')
try:
queues[-1].put_nowait(dict_shared) # put it in every explorer except the evaluator
except:
print('queue.put_nowait exception')
episode_last_eval += args.freq_eval
if agent.steps_processed >= min(args.steps_stop, args.steps_max) or episodes_interact_curr >= args.episodes_max:
event_terminate.set()
def evaluator(steps_interact, event_terminate, queue, queue_envs_eval, args, func_env, writer):
if args.gpu_evaluator:
tf = import_tf()
else:
import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')
env = func_env(args)
agent = get_agent(env, args, writer)
agent.initialize(env.reset(), env.action_space.sample())
if 'minigrid' in args.type_extractor.lower():
type_env = 'minigrid'
elif 'atari' in args.type_extractor.lower():
type_env = 'atari'
elif 'procgen' in args.type_extractor.lower():
type_env = 'procgen'
else:
type_env = 'default'
print('[EVALUATOR] loop enter')
flag_newenvs = 'distshift' in args.game.lower()
if args.env_pipeline:
print('[EVALUATOR] env generation pipeline enabled')
else:
print('[EVALUATOR] env generation pipeline disabled')
if not flag_newenvs or not args.env_pipeline:
queue_envs_eval = None
while not event_terminate.is_set():
if queue.empty():
time.sleep(0.0001)
else:
# print('[EVALUATOR] parameters clone, eval call')
dict_shared = None
while not queue.empty():
del dict_shared
dict_shared = queue.get_nowait()
agent.weights_copyfrom(dict_shared)
steps_interact = dict_shared['steps_processed']
del dict_shared
agent.steps_interact, agent.step_last_record_ts = steps_interact, steps_interact # for the lambda and the logging
evaluate_agent_mp(lambda : func_env(args), agent, num_episodes=20, type_env=type_env, step_record=None, queue_envs=queue_envs_eval, heuristic='random')
if type_env == 'minigrid':
agent.steps_interact, agent.step_last_record_ts = steps_interact, steps_interact
evaluate_agent_mp(lambda : func_env(args, lava_density_range=[0.2, 0.3]), agent, num_episodes=10, type_env=type_env, step_record=None, heuristic='random', suffix='diff_0.25', record_ts=False)
agent.steps_interact, agent.step_last_record_ts = steps_interact, steps_interact
evaluate_agent_mp(lambda : func_env(args, lava_density_range=[0.4, 0.5]), agent, num_episodes=10, type_env=type_env, step_record=None, heuristic='random', suffix='diff_0.45', record_ts=False)
agent.steps_interact, agent.step_last_record_ts = steps_interact, steps_interact
evaluate_agent_mp(lambda : func_env(args, lava_density_range=[0.5, 0.6]), agent, num_episodes=10, type_env=type_env, step_record=None, heuristic='random', suffix='diff_0.55', record_ts=False)
if not args.ignore_model and args.step_plan_max and not args.performance_only:
agent.steps_interact, agent.step_last_record_ts = steps_interact, steps_interact
evaluate_agent_mp(lambda : func_env(args), agent, num_episodes=20, suffix='_best', type_env=type_env, step_record=None, queue_envs=queue_envs_eval, heuristic='best_first')
agent.steps_interact, agent.step_last_record_ts = steps_interact, steps_interact
evaluate_agent_mp(lambda : func_env(args), agent, num_episodes=20, suffix='_modelfree', disable_planning=True, type_env=type_env, step_record=None, queue_envs=queue_envs_eval)
def run_multiprocess(args, func_env_train, func_env_eval):
pid_main = os.getpid()
env = func_env_train(args)
global_rb, kwargs_local_rb, queues, queue_envs_train, queue_envs_eval, event_terminate, steps_interact, episodes_interact, signal_explore, writer = prepare_experiment(env, args)
tasks = []
if args.env_pipeline:
tasks.append(Process(target=generator_env, args=[queue_envs_train, queue_envs_eval, func_env_train, func_env_eval, event_terminate, args]))
tasks.append(Process(target=explorer, args=[global_rb, kwargs_local_rb, queues[0], queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, func_env_train, writer]))
args_otherexplorers = copy.deepcopy(args)
args_otherexplorers.performance_only = 1
for i in range(1, args.num_explorers):
tasks.append(Process(target=explorer, args=[global_rb, kwargs_local_rb, queues[i], queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args_otherexplorers, func_env_train, None]))
tasks.append(Process(target=learner, args=[global_rb, queues, steps_interact, episodes_interact, event_terminate, signal_explore, args, pid_main, func_env_train, writer]))
tasks.append(Process(target=evaluator, args=[steps_interact, event_terminate, queues[-1], queue_envs_eval, args, func_env_eval, writer]))
for task in tasks: task.start()
for task in tasks: task.join()