forked from mila-iqia/Conscious-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_mp_dyna.py
244 lines (235 loc) · 15.2 KB
/
utils_mp_dyna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
COMPONENTS FOR DYNA BASELINE EXPERIMENTS W/ MULTI-PROCESSING
"""
import time, datetime, numpy as np
from DQN_Dyna import get_DQN_Dyna_BASE_agent, get_DQN_Dyna_agent
from utils import *
from runtime import get_cpprb_env_dict
from multiprocessing import Process, Value, Event
from multiprocessing.managers import SyncManager
from cpprb import ReplayBuffer, MPReplayBuffer, MPPrioritizedReplayBuffer
from utils import *
import os, psutil, copy
from tensorboardX import SummaryWriter
from utils_mp import import_tf, generator_env, explorer, evaluator, get_default_rb_dict
from utils import from_categorical, obs2tensor
try:
from gym.envs.registration import register as gym_register
gym_register(id="RandDistShift-v0", entry_point="RandDistShift:RandDistShift", reward_threshold=0.95)
except:
pass
def explorer_dyna(global_rb_imagined, kwargs_local, queue, queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, func_env, writer, learn_model=True):
if args.gpu_explorer:
tf = import_tf()
else:
import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')
if learn_model:
kwargs_local["env_dict"].pop("next_obs")
kwargs_local["env_dict"].pop("rew")
kwargs_local["env_dict"].pop("done")
local_rb = ReplayBuffer(**kwargs_local)
env = func_env(args)
agent = get_DQN_Dyna_BASE_agent(env, args, writer=writer)
agent.initialize(env.reset(), env.action_space.sample())
size_submit = 32
if 'procgen' in args.type_extractor.lower():
type_env = 'procgen'
elif 'minigrid' in args.game.lower() or 'distshift' in args.game.lower():
type_env = 'minigrid'
elif 'atari' in args.game.lower():
type_env = 'atari'
else:
raise NotImplementedError
flag_newenvs = args.env_pipeline and 'randdistshift' in args.game.lower()
while not event_terminate.is_set():
return_cum, steps_episode = 0, 0 # return_cum, return_cum_clipped, steps_episode = 0, 0, 0
obs_curr, done, real_done, flag_reset = env.reset(), False, False, False
if local_rb.get_stored_size() > 0: local_rb.on_episode_end()
while not flag_reset:
while not signal_explore.value and not event_terminate.is_set():
time.sleep(0.0001)
if not queue.empty() and agent.initialized:
dict_shared = None
while not queue.empty():
del dict_shared
dict_shared = queue.get_nowait()
agent.weights_copyfrom(dict_shared)
del dict_shared
steps_interact_curr, episodes_interact_curr = steps_interact.value, episodes_interact.value
agent.steps_interact = steps_interact.value
action = agent.decide(obs_curr, eval=False, env=env if type_env == 'minigrid' else None)
obs_next, reward, done, info = env.step(action) # take a computed action
steps_episode += 1
if type_env == 'procgen':
real_done = done and steps_episode != env.spec.max_episode_steps and reward == 0 and not info['prev_level_complete']
elif type_env == 'minigrid':
real_done = done and steps_episode != env.unwrapped.max_steps
else:
real_done = done
agent.step(obs_curr, action, reward, obs_next, real_done, update=False)
if learn_model:
local_rb.add(obs=obs_curr, act=action)
else:
local_rb.add(obs=obs_curr, act=action, rew=reward, done=real_done, next_obs=obs_next)
return_cum += reward
obs_curr = obs_next
flag_reset = real_done or (done and type_env == 'minigrid')
if local_rb.get_stored_size() >= size_submit:
if flag_reset: local_rb.on_episode_end()
samples_local = local_rb.get_all_transitions()
local_rb.clear()
if learn_model:
obses_curr, actions = samples_local['obs'], samples_local['act']
obses_curr = tf.cast(obs2tensor(obses_curr), tf.float32)
obses_imagined, reward_dist_imagined, term_logits_imagined = agent.model(obses_curr, tf.squeeze(tf.constant(actions)), eval=True)
term_imagined = tf.math.argmax(term_logits_imagined, axis=-1, output_type=tf.int32)
reward_imagined = from_categorical(reward_dist_imagined, value_min=agent.model.predictor_reward_term.value_min, value_max=agent.model.predictor_reward_term.value_max, atoms=agent.model.predictor_reward_term.atoms, transform=agent.model.predictor_reward_term.transform)
samples_local['rew'], samples_local['done'], samples_local['next_obs'] = reward_imagined.numpy().reshape(-1, 1), term_imagined.numpy().reshape(-1, 1), tf.cast(tf.math.round(tf.clip_by_value(obses_imagined, clip_value_min=0, clip_value_max=96)), tf.uint8).numpy()
if args.prioritized_replay:
global_rb_imagined.add(**samples_local, priorities=agent.calculate_priorities(samples_local))
else:
global_rb_imagined.add(**samples_local)
if writer is not None:
writer.add_scalar('Performance/train', return_cum, steps_interact_curr)
writer.add_scalar('Other/episodes', episodes_interact_curr, steps_interact_curr)
with episodes_interact.get_lock(): episodes_interact.value += 1
if flag_newenvs:
del env
if queue_envs_train.empty():
env = func_env(args)
else:
env = queue_envs_train.get_nowait()
def learner_dyna(global_rb, global_rb_imagined, queues, steps_interact, episodes_interact, event_terminate, signal_explore, args, pid_main, func_env, writer):
tf = import_tf()
process_main = psutil.Process(pid_main)
process_learner = psutil.Process(os.getpid())
env = func_env(args)
agent = get_DQN_Dyna_agent(env, args, writer=writer, replay_buffer=global_rb, replay_buffer_imagined=global_rb_imagined)
step_last_sync, episode_last_eval, time_last_disp = 0, 0, time.time()
print('[LEARNER] loop enter')
agent.steps_interact = steps_interact.value
freq_sync = 64
flag_updated_since_sync = False
batch_preload, batch_preload_imagined = None, None
steps_processed_last_disp, episode_last_disp, time_last_disp = 0, 0, time.time()
while not event_terminate.is_set():
episodes_interact_curr = episodes_interact.value
flag_eval = agent.initialized and (episodes_interact_curr - episode_last_eval) >= args.freq_eval
agent.steps_interact = steps_interact.value
flag_sync = agent.initialized and (agent.steps_interact - step_last_sync) >= freq_sync and agent.steps_interact >= agent.time_learning_starts
flag_need_update = agent.need_update()
if flag_need_update:
with signal_explore.get_lock(): signal_explore.value = False
agent.step_update(batch=batch_preload, batch_imagined=batch_preload_imagined)
batch_preload, batch_preload_imagined = None, None
flag_updated_since_sync = True
if episodes_interact_curr - episode_last_disp > 0:
mem = process_main.memory_info().rss
mem_learner = 0
for process_child in process_main.children(recursive=True):
if process_child.pid == process_learner.pid:
mem_learner = process_child.memory_info().rss
mem += process_child.memory_info().rss
mem, mem_learner = mem / 1073741824, mem_learner / 1073741824
time_from_last_disp = time.time() - time_last_disp
if time_from_last_disp > 0:
sps = (agent.steps_processed - steps_processed_last_disp) / time_from_last_disp
if sps > 0:
eta = str(datetime.timedelta(seconds=int((args.steps_stop - agent.steps_processed) / sps)))
writer.add_scalar('Other/sps', sps, agent.steps_interact)
try:
print('[LEARNER] episode_explored: %d, step_explored: %d, steps_processed: %d, size_buffer: %d, epsilon: %.2f, mem: %.2f(%.2f)GiB, sps: %.2f, eta: %s' % (episodes_interact_curr, steps_interact.value, agent.steps_processed, global_rb.get_stored_size(), agent.epsilon.value(agent.steps_interact), mem, mem_learner, sps, eta))
except:
pass
else:
try:
print('[LEARNER] episode_explored: %d, step_explored: %d, steps_processed: %d, size_buffer: %d, epsilon: %.2f, mem: %.2f(%.2f)GiB, sps: 0.00, eta: ---' % (episodes_interact_curr, steps_interact.value, agent.steps_processed, global_rb.get_stored_size(), agent.epsilon.value(agent.steps_interact), mem, mem_learner))
except:
pass
else:
try:
print('[LEARNER] episode_explored: %d, step_explored: %d, steps_processed: %d, size_buffer: %d, epsilon: %.2f, mem: %.2fGiB, sps: inft, eta: 0s' % (episodes_interact_curr, steps_interact.value, agent.steps_processed, global_rb.get_stored_size(), agent.epsilon.value(agent.steps_interact), mem, mem_learner))
except:
pass
if np.random.rand() < 0.01: writer.add_scalar('Other/RAM', mem, agent.steps_processed)
steps_processed_last_disp, episode_last_disp, time_last_disp = agent.steps_processed, episodes_interact_curr, time.time()
dict_shared = None
elif agent.initialized:
if batch_preload is None and global_rb.get_stored_size() >= agent.size_batch: batch_preload = agent.sample_batch()
if batch_preload_imagined is None and global_rb_imagined.get_stored_size() >= agent.size_batch: batch_preload_imagined = agent.sample_batch(imagined=True)
if (flag_sync and not flag_need_update and flag_updated_since_sync) or flag_eval:
if args.method != 'DQN_Dyna' and agent.ignore_model or args.method == 'DQN_Dyna' and not args.learn_dyna_model:
dict_shared = {'network_policy_src': agent.network_policy.get_weights(), 'embed_pos_src': tf.keras.backend.get_value(agent.embed_pos), 'model_src': None, 'steps_processed': agent.steps_processed}
else:
dict_shared = {'network_policy_src': agent.network_policy.get_weights(), 'embed_pos_src': tf.keras.backend.get_value(agent.embed_pos), 'model_src': agent.model.get_weights(), 'steps_processed': agent.steps_processed}
if flag_sync and not flag_need_update and flag_updated_since_sync:
# print('[LEARNER] parameters broadcast to explorers')
for i in range(len(queues) - 1):
try:
queues[i].put_nowait(dict_shared) # put it in every explorer except the evaluator
except:
print('queue.put_nowait exception')
step_last_sync += freq_sync
flag_updated_since_sync = False
if flag_eval:
# print('[LEARNER] parameters broadcast to evaluator')
try:
queues[-1].put_nowait(dict_shared) # put it in every explorer except the evaluator
except:
print('queue.put_nowait exception')
episode_last_eval += args.freq_eval
if agent.steps_processed >= min(args.steps_stop, args.steps_max) or episodes_interact_curr >= args.episodes_max:
event_terminate.set()
if not flag_need_update:
with signal_explore.get_lock(): signal_explore.value = True
writer.flush()
def prepare_experiment(env, args):
SyncManager.register('SummaryWriter', SummaryWriter)
manager = SyncManager()
manager.start()
kwargs = get_default_rb_dict(args.size_buffer, env)
kwargs["check_for_update"] = True
kwargs['env_dict'] = get_cpprb_env_dict(env)
kwargs['env_dict']['next_obs'] = kwargs['env_dict']['obs'] # no memory compression for MP else huge problems
if args.prioritized_replay:
global_rb = MPPrioritizedReplayBuffer(**kwargs)
else:
global_rb = MPReplayBuffer(**kwargs)
kwargs_imagined = copy.deepcopy(kwargs)
kwargs_imagined['size'] = 1024
if args.prioritized_replay:
global_rb_imagined = MPPrioritizedReplayBuffer(**kwargs_imagined)
else:
global_rb_imagined = MPReplayBuffer(**kwargs_imagined)
kwargs_local = copy.deepcopy(kwargs)
kwargs_local['size'] = 128
# queues to share network parameters between a learner and explorers
n_queue = args.num_explorers + 1 # for evaluation
queues = [manager.Queue() for _ in range(n_queue)]
queue_envs_train, queue_envs_eval = manager.Queue(maxsize=32), manager.Queue(maxsize=32)
# Event object to share training status. if event is set True, all exolorers stop sampling transitions
event_terminate = Event()
# Shared memory objects to count number of samples and applied gradients
steps_interact, episodes_interact = Value('i', 0), Value('i', 0) # dtype and initial values
signal_explore = Value('b', False)
glboal_writer = manager.SummaryWriter("%s/%s/%s/%d" % (args.game, args.method, args.comments, args.seed))
return global_rb, global_rb_imagined, kwargs_local, queues, queue_envs_train, queue_envs_eval, event_terminate, steps_interact, episodes_interact, signal_explore, glboal_writer
def run_multiprocess(args, func_env_train, func_env_eval):
# TODO: separate the normal explorers and the dyna explorers
if args.num_explorers % 2 != 0:
raise ValueError("args.num_explorers should be even, instead received %g" % (args.num_explorers,))
pid_main = os.getpid()
env = func_env_train(args)
global_rb, global_rb_imagined, kwargs_local_rb, queues, queue_envs_train, queue_envs_eval, event_terminate, steps_interact, episodes_interact, signal_explore, writer = prepare_experiment(env, args)
tasks = []
tasks.append(Process(target=generator_env, args=[queue_envs_train, queue_envs_eval, func_env_train, func_env_eval, event_terminate, args]))
tasks.append(Process(target=explorer, args=[global_rb, kwargs_local_rb, queues[0], queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, func_env_train, writer]))
for i in range(1, int(args.num_explorers / 2)):
tasks.append(Process(target=explorer, args=[global_rb, kwargs_local_rb, queues[i], queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, func_env_train, None]))
for i in range(int(args.num_explorers / 2), args.num_explorers):
tasks.append(Process(target=explorer_dyna, args=[global_rb_imagined, kwargs_local_rb, queues[i], queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, func_env_train, None, args.learn_dyna_model]))
tasks.append(Process(target=learner_dyna, args=[global_rb, global_rb_imagined, queues, steps_interact, episodes_interact, event_terminate, signal_explore, args, pid_main, func_env_train, writer]))
tasks.append(Process(target=evaluator, args=[steps_interact, event_terminate, queues[-1], queue_envs_eval, args, func_env_eval, writer]))
for task in tasks: task.start()
for task in tasks: task.join()