-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathdemo_hqsam.py
147 lines (124 loc) · 5.59 KB
/
demo_hqsam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
from segment_anything import sam_model_registry, SamPredictor
import os
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def show_res(masks, scores, input_point, input_label, input_box, filename, image):
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_box is not None:
box = input_box[i]
show_box(box, plt.gca())
if (input_point is not None) and (input_label is not None):
show_points(input_point, input_label, plt.gca())
print(f"Score: {score:.3f}")
plt.axis('off')
plt.savefig(filename+'_'+str(i)+'.png',bbox_inches='tight',pad_inches=-0.1)
plt.close()
def show_res_multi(masks, scores, input_point, input_label, input_box, filename, image):
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask, plt.gca(), random_color=True)
for box in input_box:
show_box(box, plt.gca())
for score in scores:
print(f"Score: {score:.3f}")
plt.axis('off')
plt.savefig(filename +'.png',bbox_inches='tight',pad_inches=-0.1)
plt.close()
if __name__ == "__main__":
sam_checkpoint = "./pretrained_checkpoint/sam_hq_vit_l.pth"
model_type = "vit_l"
device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
for i in range(8):
print("image: ",i)
# hq_token_only: False means use hq output to correct SAM output.
# True means use hq output only.
# Default: False
hq_token_only = False
# To achieve best visualization effect, for images contain multiple objects (like typical coco images), we suggest to set hq_token_only=False
# For images contain single object, we suggest to set hq_token_only = True
# For quantiative evaluation on COCO/YTVOS/DAVIS/UVO/LVIS etc., we set hq_token_only = False
image = cv2.imread('demo/input_imgs/example'+str(i)+'.png')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
if i==0:
input_box = np.array([[4,13,1007,1023]])
input_point, input_label = None, None
elif i==1:
input_box = np.array([[306, 132, 925, 893]])
input_point, input_label = None, None
hq_token_only = True
elif i==2:
input_point = np.array([[495,518],[217,140]])
input_label = np.ones(input_point.shape[0])
input_box = None
hq_token_only = True
elif i==3:
input_point = np.array([[221,482],[498,633],[750,379]])
input_label = np.ones(input_point.shape[0])
input_box = None
elif i==4:
input_box = np.array([[64,76,940,919]])
input_point, input_label = None, None
hq_token_only = True
elif i==5:
input_point = np.array([[373,363], [452, 575]])
input_label = np.ones(input_point.shape[0])
input_box = None
elif i==6:
input_box = np.array([[181, 196, 757, 495]])
input_point, input_label = None, None
elif i==7:
# multi box input
input_box = torch.tensor([[45,260,515,470], [310,228,424,296]],device=predictor.device)
transformed_box = predictor.transform.apply_boxes_torch(input_box, image.shape[:2])
input_point, input_label = None, None
batch_box = False if input_box is None else len(input_box)>1
result_path = 'demo/hq_sam_result/'
os.makedirs(result_path, exist_ok=True)
if not batch_box:
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
box = input_box,
multimask_output=False,
hq_token_only=hq_token_only,
)
show_res(masks,scores,input_point, input_label, input_box, result_path + 'example'+str(i), image)
else:
masks, scores, logits = predictor.predict_torch(
point_coords=input_point,
point_labels=input_label,
boxes=transformed_box,
multimask_output=False,
hq_token_only=hq_token_only,
)
masks = masks.squeeze(1).cpu().numpy()
scores = scores.squeeze(1).cpu().numpy()
input_box = input_box.cpu().numpy()
show_res_multi(masks, scores, input_point, input_label, input_box, result_path + 'example'+str(i), image)