-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
202 lines (173 loc) · 7.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# See https://github.com/convex-labs/honestnft-shenanigans/issues/86 for more details
# Given a collection of NFTs on OpenSea, detect suspicious NFTs
# TODO start
# Save the results into a CSV: include collection, NFT, ID, date it was checked...
# Resiliency: resume scraping from where it was left off if network breaks for example
# Multithreading: distribute scraping to multiple processes (5-10) for performance improvements
# ! Handle outliers: collections with IDs of NFTs that are unpredictable: https://opensea.io/assets/ethereum/0x495f947276749ce646f68ac8c248420045cb7b5e/1350204010727590036333503804244432743205262951888776484545241060344672026625
# Adjust depending on capabilities of the official OpenSea API
# TODO end
import time
from multiprocessing import Pool
from argparse import ArgumentParser
import logging
import json
import cloudscraper
import pandas as pd
from bs4 import BeautifulSoup
from requests.adapters import HTTPAdapter, Retry
logging.basicConfig(level=logging.INFO)
parser = ArgumentParser()
parser.add_argument(
"-c",
"--collection",
dest="collection_address",
help="Address of the NFT collection",
metavar="COLLECTION",
required=True,
)
parser.add_argument(
"-r",
"--retries",
dest="retries",
help="Number of retry attempts",
metavar="RETRIES",
required=False,
default=3,
)
parser.add_argument(
"--backoff",
dest="backoff",
help="Retries backoff parameter for failed requests",
metavar="RETRIES",
required=False,
default=3,
)
parser.add_argument(
"-b",
"--batch-size",
dest="batch_size",
help="Batch size of NFT URLs to be processed in parallell",
metavar="RETRIES",
required=False,
default=50,
)
args = parser.parse_args()
COLLECTION_CSV_PATH = f"./suspicious_{args.collection_address}.csv"
scraper = cloudscraper.create_scraper()
# Configration of cloudscraper underlying requests module
# CloudScraper is a sub-class of Session
retry_strategy = Retry(
total=args.retries,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS"],
backoff_factor=args.backoff,
raise_on_status=False, # If retries fail, return response instead of raising exception
respect_retry_after_header=True,
)
adapter = HTTPAdapter(max_retries=retry_strategy)
scraper.mount("https://", adapter)
scraper.mount("http://", adapter)
def is_nft_suspicious(nft_url):
logging.info(f"Scraping NFT with link: {nft_url}")
res = scraper.get(nft_url)
if res.status_code == 404: # NFT not found
logging.info("NFT not found. Probably reached the end of a collection")
return None, None
if res.status_code == 200:
soup = BeautifulSoup(res.text, "html.parser")
collection_name = soup.find(class_="item--collection-detail").text
owner = soup.find(class_="AccountLink--ellipsis-overflow").text.replace(
"Owned by\xa0", ""
)
data = {
"collection": args.collection_address,
"collection_name": collection_name,
"blockchain": "ethereum",
"url": nft_url,
"owner": owner,
}
if res.text.find('"isListable":false') > 0:
logging.info(f"Found suspicious NFT of URL {nft_url}")
return True, data
else:
return False, data
OPENSEA_BASE_URL = (
"https://opensea.io/assets/ethereum/" # TODO adjust for other blockchains
)
OPENSEA_BASE_API = "https://api.opensea.io/api/v1/asset/"
def list_collection_nfts_urls(collection_address):
"""List all OpenSea URLs of NFTs in a collection
Args:
collection_address (string): NFT collection address
Returns:
array: list of the OpenSea URLs of NFTs
"""
link = (OPENSEA_BASE_API + collection_address + "/0/?format=json")
res = scraper.get(link)
parsed = json.loads(res.text)
nft_supply = int(parsed['collection']['stats']['total_supply'])
# ! This is just a mock function. It is to be replaced with a call to the OpenSea API
nft_urls = []
for i in range(0, nft_supply):
nft_urls.append(f"{OPENSEA_BASE_URL}{collection_address}/{i}")
return nft_urls
def scrape_all_collection_suspicious_nfts(collection_address):
# TODO check that the collection address is valid
collection_nfts_urls = list_collection_nfts_urls(collection_address)
logging.info(f"Collection contains {len(collection_nfts_urls)} NFTs")
collection_cache = load_scrape_cache(collection_nfts_urls)
logging.info(f"Found {len(collection_cache)} NFTs in collection cache")
# TODO removed scraped URLs from the list to be scraped
for index, nft in collection_cache.iterrows():
if (
nft["url"] in collection_nfts_urls
): # TODO add an expiry rule, depending on date of last scraped
logging.debug(f"NFT to be scraped already in cache. Skipping {nft['url']}")
collection_nfts_urls.remove(nft["url"])
logging.info(f"Scraping a list of {len(collection_nfts_urls)} NFTs")
BATCH_SIZE = int(args.batch_size)
nft_urls_batches = [
collection_nfts_urls[i : i + BATCH_SIZE]
for i in range(0, len(collection_nfts_urls), BATCH_SIZE)
]
for index, batch in enumerate(nft_urls_batches):
print(f"Scraped {index * BATCH_SIZE} NFT URLs so far")
with Pool(5) as p:
# ! Multiple return values
results = p.map(is_nft_suspicious, batch)
results = list(filter(((None, None)).__ne__, results))
if results == []: # Reached a batch full of NFTs not found
print(f"Reached a batch of NFTs not found. Exiting...")
return
df = pd.DataFrame([{**y, **{"suspicious": x}} for x, y in results])
df.to_csv(COLLECTION_CSV_PATH, mode="a", header=False, index=False)
return
def load_scrape_cache(collection_address):
"""Loads cache of previously scraped collections, based on CSV files saved.
Args:
collection_address (string): Blockchain address of the NFT collection
"""
try:
df = pd.read_csv(COLLECTION_CSV_PATH)
return df
except FileNotFoundError:
logging.info("New collection to scrape. No cache detected.")
logging.debug("Creating CSV with header for new collection to scrape")
df = pd.DataFrame(
columns=[
"collection",
"collection_name",
"blockchain",
"url",
"owner",
"is_suspicious",
]
)
df.to_csv(COLLECTION_CSV_PATH, index=False)
return pd.DataFrame()
scrape_all_collection_suspicious_nfts(args.collection_address)
# python fair_drop/suspicious.py -c 0xe21ebcd28d37a67757b9bc7b290f4c4928a430b1 # The Saudis
# python fair_drop/suspicious.py -c 0x78d61c684a992b0289bbfe58aaa2659f667907f8 # Superplastic: supergucci
# python fair_drop/suspicious.py -c 0xb47e3cd837ddf8e4c57f05d70ab865de6e193bbb # CryptoPunks
# python fair_drop/suspicious.py -c 0x60e4d786628fea6478f785a6d7e704777c86a7c6 # Mutant Ape Yacht Club