-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpascalvoc2012_dataset.py
59 lines (50 loc) · 2.59 KB
/
pascalvoc2012_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# ALL ACKNOWLEDGMENT GOES TO THE PAPER & REPOSITORY AUTHORS
# https://github.com/jfzhang95/pytorch-deeplab-xception
from torchvision import transforms
from torchvision import datasets
from .sb_dataset import *
import torch
import random
import numpy as np
from PIL import Image, ImageOps, ImageFilter
def PascalVOC2012_dataset(stage="train", use_sbd_dataset=False, download=True, root='datasets/'):
if stage == "train":
voc_train = datasets.VOCSegmentation(root, year='2012', image_set='train', download=download,
transforms=CustomCompose([
CustomRandomHorizontalFlip(),
CustomRandomScaleCrop(base_size=513, crop_size=513),
CustomRandomGaussianBlur(),
# NOTE: original repo has args parameter
# CustomRandomScaleCrop(base_size=args.base_size, crop_size=args.crop_size),
CustomNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
CustomToTensor(),
]))
if use_sbd_dataset:
sbd_train = SB_dataset(stage, download=download)
print('Merging PascalVOC2012 and SB datasets')
return torch.utils.data.ConcatDataset([voc_train, sbd_train])
else:
return voc_train
else:
return datasets.VOCSegmentation(root, year='2012', image_set='val', download=download,
transforms=CustomCompose([
CustomFixScaleCrop(crop_size=513),
CustomNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
CustomToTensor(),
]))
if __name__ == '__main__':
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
voc_train = PascalVOC2012_dataset(stage='train', use_sbd_dataset=False, download=False)
dataloader = DataLoader(voc_train, batch_size=3, shuffle=True, num_workers=0)
print('Created loader')
for ii, sample in enumerate(dataloader):
img, gt = sample
for jj in range(img.size()[0]):
plt.figure()
plt.subplot(211)
plt.imshow(img[jj].numpy().transpose((1, 2, 0)))
plt.subplot(212)
plt.imshow(gt[jj].numpy())
break
plt.show(block=True)