-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_SA_CT_plot.m
163 lines (141 loc) · 5.21 KB
/
gsw_SA_CT_plot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function c2 = gsw_SA_CT_plot(SA,CT,p_ref,isopycs,title_string)
% gsw_SA_CT_plot plots Absolute Salinity - Conservative Temperature
% profiles on a SA-CT diagram including freezing line and
% selected potential density contours (75-term equation)
%==========================================================================
%
% USAGE:
% gsw_SA_CT_plot(SA,CT,p_ref,isopycs,title_string)
%
% DESCRIPTION:
% Produces a plot of Absolute Salinity - Conservative Temperature
% profiles. The diagram also plots the Conservative Temperature freezing
% point for p = 0 dbar assuming the seawater is completely saturated with
% dissolved air and user defined potential density contours. This
% function uses the computationally efficient 75-term expression for
% specific volume in terms of SA, CT and p (Roquet et al., 2015).
%
% Note that the 75-term equation has been fitted in a restricted range of
% parameter space, and is most accurate inside the "oceanographic funnel"
% described in McDougall et al. (2003). The GSW library function
% "gsw_infunnel(SA,CT,p)" is avaialble to be used if one wants to test if
% some of one's data lies outside this "funnel".
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
%
% Optional:
% p_ref = reference sea pressure for the isopycnals [ dbar ]
% (i.e. absolute reference pressure - 10.1325 dbar)
% If it is not suppled a default of 0 dbar is used.
% isopycs = isopycnals, can be either an array of isopynals or the
% number of isopynals to appear on the plot. If it is not
% supplied the programme defaults to 5 isopynals.
% title_string = title text to appear at the top of the plot.
%
% SA & CT need to have the same dimensions.
% p_ref should be a scalar, (i.e. have dimensions 1x1).
% isopycs can be either 1x1 or 1xN or Mx1
%
% AUTHOR:
% Rich Pawlowicz [ help@teos-10.org ]
% Note. This function was extracted and adapted from Rich Pawlowicz's
% ocean toolbox.
%
% MODIFIED:
% Paul Barker & Trevor McDougall
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003:
% Accurate and computationally efficient algorithms for potential
% temperature and density of seawater. J. Atmosph. Ocean. Tech., 20,
% pp. 730-741.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2014: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
if (nargin < 2),
error('gsw_SA_CT_plot: You need to supply both Absolute Salinity and Conservative Temperature');
end
if ~exist('p_ref','var'),
p_ref = 0;
isopycs = 5;
end
if ischar(p_ref) == 1
title_string = p_ref;
p_ref = 0;
isopycs = 5;
end
if ~isscalar(unique(p_ref))
error('gsw_SA_CT_plot: Multiple reference pressures');
else
p_ref = unique(p_ref);
end
if ~exist('isopycs','var'),
isopycs = 5;
end
if ischar(isopycs) == 1
title_string = isopycs;
isopycs = 5;
end
isopycs = isopycs(:);
min_SA_data = min(min(SA(:)));
max_SA_data = max(max(SA(:)));
min_CT_data = min(min(CT(:)));
max_CT_data = max(max(CT(:)));
SA_min = min_SA_data - 0.1*(max_SA_data - min_SA_data);
SA_min(SA_min < 0) = 0;
SA_max = max_SA_data + 0.1*(max_SA_data - min_SA_data);
SA_axis = [SA_min:(SA_max-SA_min)/200:SA_max];
CT_freezing = gsw_CT_freezing(SA_axis,p_ref,0);
CT_min = min_CT_data - 0.1*(max_CT_data - min_CT_data);
CT_max = max_CT_data + 0.1*(max_CT_data - min_CT_data);
if CT_min > min(CT_freezing)
CT_min = min_CT_data - 0.1*(max_CT_data - min(CT_freezing));
end
CT_axis = [CT_min:(CT_max-CT_min)/200:CT_max];
clear min_SA_data max_SA_data min_CT_data max_CT_data
SA_gridded = meshgrid(SA_axis,1:length(CT_axis));
CT_gridded = meshgrid(CT_axis,1:length(SA_axis))';
isopycs_gridded = gsw_rho(SA_gridded,CT_gridded,p_ref)-1000;
% figure
%scaling for macs
sz = 1;
try
if ismac
sz = sz*(96/72);
end
end
if ~isempty(isopycs)
[c1,h] = contour(SA_gridded,CT_gridded,isopycs_gridded,isopycs,':','Color',[.5 .5 .5]);
end
hold on;
[c2] = plot(SA,CT,'.','linewidth',2*sz);
set(c2,'Marker','o','MarkerSize',5*sz,'MarkerEdgeColor','none', ...
'MarkerFaceColor','b');
if exist('c1','var')
clabel(c1,h,'labelspacing',360,'fontsize',8*sz,'color',[.5 .5 .5]);
end
axis('square');
axis([SA_min SA_max CT_min CT_max]);
xlabel('Absolute Salinity, \it{S}\rm_A (g kg^-^1) ','fontsize',13*sz);
ylabel('Conservative Temperature, {\Theta} ({\circ}C)','fontsize',13*sz);
if exist('title_string','var')
title([title_string],'fontsize',14*sz)
else
title('\it{S}\rm_A - {\Theta} diagram','fontsize',14*sz)
end
set(gca,'tickdir','out')
line(SA_axis,CT_freezing,'LineStyle','--');
txt = text(0.01,0.99,[' p_r_e_f = ' int2str(p_ref) ' dbar'], ...
'horiz','left','Vert','top','units','normalized','color',[.3 .3 .3]);
txt_fs = get(txt,'fontsize');
set(txt,'fontsize',txt_fs*sz);
end