-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_SP_from_C.m
193 lines (165 loc) · 6.28 KB
/
gsw_SP_from_C.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
function SP = gsw_SP_from_C(C,t,p)
% gsw_SP_from_C Practical Salinity from conductivity
%==========================================================================
%
% USAGE:
% SP = gsw_SP_from_C(C,t,p)
%
% DESCRIPTION:
% Calculates Practical Salinity, SP, from conductivity, C, primarily using
% the PSS-78 algorithm. Note that the PSS-78 algorithm for Practical
% Salinity is only valid in the range 2 < SP < 42. If the PSS-78
% algorithm produces a Practical Salinity that is less than 2 then the
% Practical Salinity is recalculated with a modified form of the Hill et
% al. (1986) formula. The modification of the Hill et al. (1986)
% expression is to ensure that it is exactly consistent with PSS-78
% at SP = 2. Note that the input values of conductivity need to be in
% units of mS/cm (not S/m).
%
% INPUT:
% C = conductivity [ mS/cm ]
% t = in-situ temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% t & p may have dimensions 1x1 or Mx1 or 1xN or MxN, where C is MxN.
%
% OUTPUT:
% SP = Practical Salinity on the PSS-78 scale [ unitless ]
%
% AUTHOR:
% Paul Barker, Trevor McDougall and Rich Pawlowicz [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% Culkin and Smith, 1980: Determination of the Concentration of Potassium
% Chloride Solution Having the Same Electrical Conductivity, at 15C and
% Infinite Frequency, as Standard Seawater of Salinity 35.0000
% (Chlorinity 19.37394), IEEE J. Oceanic Eng, 5, 22-23.
%
% Hill, K.D., T.M. Dauphinee & D.J. Woods, 1986: The extension of the
% Practical Salinity Scale 1978 to low salinities. IEEE J. Oceanic Eng.,
% 11, 109 - 112.
%
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See appendix E of this TEOS-10 Manual.
%
% Unesco, 1983: Algorithms for computation of fundamental properties of
% seawater. Unesco Technical Papers in Marine Science, 44, 53 pp.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 3)
error('gsw_SP_from_C: Requires three input arguments')
end %if
[mc,nc] = size(C);
[mt,nt] = size(t);
[mp,np] = size(p);
if (mt == 1) & (nt == 1) % t scalar - fill to size of C
t = t*ones(size(C));
elseif (nc == nt) & (mt == 1) % t is row vector,
t = t(ones(1,mc), :); % copy down each column.
elseif (mc == mt) & (nt == 1) % t is column vector,
t = t(:,ones(1,nc)); % copy across each row.
elseif (nc == mt) & (nt == 1) % t is a transposed row vector,
t = t.'; % transposed then
t = t(ones(1,mc), :); % copy down each column.
elseif (mc == mt) & (nc == nt)
% ok
else
error('gsw_SP_from_C: Inputs array dimensions arguments do not agree')
end %if
if (mp == 1) & (np == 1) % p scalar - fill to size of C
p = p*ones(size(C));
elseif (nc == np) & (mp == 1) % p is row vector,
p = p(ones(1,mc), :); % copy down each column.
elseif (mc == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,nc)); % copy across each row.
elseif (nc == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,mc), :); % copy down each column.
elseif (mc == mp) & (nc == np)
% ok
else
error('gsw_SP_from_C: Inputs array dimensions arguments do not agree')
end %if
if mc == 1
C = C.';
t = t.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
a0 = 0.0080;
a1 = -0.1692;
a2 = 25.3851;
a3 = 14.0941;
a4 = -7.0261;
a5 = 2.7081;
b0 = 0.0005;
b1 = -0.0056;
b2 = -0.0066;
b3 = -0.0375;
b4 = 0.0636;
b5 = -0.0144;
c0 = 0.6766097;
c1 = 2.00564e-2;
c2 = 1.104259e-4;
c3 = -6.9698e-7;
c4 = 1.0031e-9;
d1 = 3.426e-2;
d2 = 4.464e-4;
d3 = 4.215e-1;
d4 = -3.107e-3;
e1 = 2.070e-5;
e2 = -6.370e-10;
e3 = 3.989e-15;
k = 0.0162;
[Iocean] = find(~isnan(C + t + p));
t68 = t(Iocean).*1.00024;
ft68 = (t68 - 15)./(1 + k*(t68 - 15));
% The dimensionless conductivity ratio, R, is the conductivity input, C,
% divided by the present estimate of C(SP=35, t_68=15, p=0) which is
% 42.9140 mS/cm (=4.29140 S/m), (Culkin and Smith, 1980).
R = 0.023302418791070513.*C(Iocean); % 0.023302418791070513 = 1./42.9140
% rt_lc corresponds to rt as defined in the UNESCO 44 (1983) routines.
rt_lc = c0 + (c1 + (c2 + (c3 + c4.*t68).*t68).*t68).*t68;
Rp = 1 + (p(Iocean).*(e1 + e2.*p(Iocean) + e3.*p(Iocean).*p(Iocean)))./ ...
(1 + d1.*t68 + d2.*t68.*t68 + (d3 + d4.*t68).*R);
Rt = R./(Rp.*rt_lc);
Rt(Rt < 0) = NaN;
Rtx = sqrt(Rt);
SP = NaN(size(C));
SP(Iocean) = a0 + (a1 + (a2 + (a3 + (a4 + a5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx + ...
ft68.*(b0 + (b1 + (b2 + (b3 + (b4 + b5.*Rtx).*Rtx).*Rtx).*Rtx).*Rtx);
% The following section of the code is designed for SP < 2 based on the
% Hill et al. (1986) algorithm. This algorithm is adjusted so that it is
% exactly equal to the PSS-78 algorithm at SP = 2.
if any(SP(Iocean) < 2)
[I2] = find(SP(Iocean) < 2);
Hill_ratio = gsw_Hill_ratio_at_SP2(t(Iocean(I2)));
x = 400*Rt(I2);
sqrty = 10*Rtx(I2);
part1 = 1 + x.*(1.5 + x);
part2 = 1 + sqrty.*(1 + sqrty.*(1 + sqrty));
SP_Hill_raw = SP(Iocean(I2)) - a0./part1 - b0.*ft68(I2)./part2;
SP(Iocean(I2)) = Hill_ratio.*SP_Hill_raw;
end
% This line ensures that SP is non-negative.
SP(SP < 0) = 0;
if transposed
SP = SP.';
end
end