-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_geo_strf_Montgomery.m
152 lines (137 loc) · 6.18 KB
/
gsw_geo_strf_Montgomery.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function geo_strf_Montgomery = gsw_geo_strf_Montgomery(SA,CT,p,p_ref)
% gsw_geo_strf_Montgomery Montgomery geostrophic
% streamfunction (75-term equation)
%==========================================================================
%
% USAGE:
% geo_strf_Montgomery = gsw_geo_strf_Montgomery(SA,CT,p,p_ref)
%
% DESCRIPTION:
% Calculates the Montgomery geostrophic streamfunction (see Eqn. (3.28.1)
% of IOC et al. (2010)). This is the geostrophic streamfunction for the
% difference between the horizontal velocity at the pressure concerned, p,
% and the horizontal velocity on the pressure surface, p_ref. The
% Montgomery geostrophic streamfunction is the geostrophic streamfunction
% for flow in a specifc volume anomaly surface. The reference values used
% for the specific volume anomaly are SA = SSO = 35.16504 g/kg and
% CT = 0 deg C. This function calculates specific volume anomaly using
% the computationally efficient 75-term expression for specific volume of
% Roquet et al. (2015).
%
% Note that p_ref, is the reference pressure to which the streamfunction
% is referenced. When p_ref is zero, "gsw_geo_strf_Montgomery" returns
% the Montgomery geostrophic streamfunction with respect to the sea
% surface, otherwise, the function returns the geostrophic streamfunction
% with respect to the (deep) reference pressure p_ref.
%
% Note that the 75-term equation has been fitted in a restricted range of
% parameter space, and is most accurate inside the "oceanographic funnel"
% described in McDougall et al. (2003). The GSW library function
% "gsw_infunnel(SA,CT,p)" is avaialble to be used if one wants to test if
% some of one's data lies outside this "funnel".
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
% p_ref = reference pressure [ dbar ]
% ( i.e. reference absolute pressure - 10.1325 dbar )
%
% SA & CT need to have the same dimensions.
% p may have dimensions Mx1 or 1xN or MxN, where SA & CT are MxN.
% p_ref needs to be a single value, it can have dimensions 1x1 or Mx1 or
% 1xN or MxN.
%
% OUTPUT:
% geo_strf_Montgomery = Montgomery geostrophic [ m^2/s^2 ]
% streamfunction
%
% AUTHOR:
% Trevor McDougall and Paul Barker [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See section 3.28 of this TEOS-10 Manual.
%
% McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003:
% Accurate and computationally efficient algorithms for potential
% temperature and density of seawater. J. Atmosph. Ocean. Tech., 20,
% pp. 730-741.
%
% Montgomery, R. B., 1937: A suggested method for representing gradient
% flow in isentropic surfaces. Bull. Amer. Meteor. Soc. 18, 210-212.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 4)
error('gsw_geo_strf_Montgomery: Requires four inputs')
end
unique_p_ref = unique(p_ref);
if ~isscalar(unique_p_ref)
error('gsw_geo_strf_Montgomery: The reference pressure p_ref must be unique')
end
clear p_ref
p_ref = unique_p_ref;
[ms,ns] = size(SA);
[mt,nt] = size(CT);
[mp,np] = size(p);
if (ms~=mt) | (ns~=nt)
error('gsw_geo_strf_Montgomery: SA & CT need to have the same dimensions')
end
if (mp == 1) & (np == 1) % p is a scalar
error('gsw_geo_strf_Montgomery: need more than one pressure');
elseif (ns == np) & (mp == 1) % p is row vector,
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,ns)); % copy across each row.
elseif (ns == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (ns == np)
% ok
else
error('gsw_geo_strf_Montgomery: Inputs array dimensions arguments do not agree')
end
transposed = 0;
if ms == 1
p = p(:);
CT = CT(:);
SA = SA(:);
transposed = 1;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
db2Pa = 1e4;
dyn_height = gsw_geo_strf_dyn_height(SA,CT,p,p_ref);
geo_strf_Montgomery = db2Pa*p.*gsw_specvol_anom_standard(SA,CT,p) + dyn_height;
%--------------------------------------------------------------------------
% This function calculates the Montgomery streamfunction using the
% computationally efficient 75-term expression for specific volume in terms
% of SA, CT and p. If one wanted to compute this with the full TEOS-10
% Gibbs function expression for specific volume, the following lines of
% code will enable this. Note that dynamic height will also need to be
% evaluated using the full Gibbs function.
%
% geo_strf_Montgomery = db2Pa*p.*gsw_specvol_anom_standard_CT_exact(SA,CT,p) ...
% + dyn_height;
%
%---------------This is the end of the alternative code--------------------
if transposed
geo_strf_Montgomery = geo_strf_Montgomery.';
end
end